Engineered Living Systems Based on Gelatin : Design, Manufacturing, and Applications
© 2025 Wiley‐VCH GmbH.
| Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 05. Feb., Seite e2416260 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , , , , , , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2025
|
| Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
| Sujets: | Journal Article Review 3D printing biofabrication engineered living systems gelatin hydrogels |
| Résumé: | © 2025 Wiley‐VCH GmbH. Engineered living systems (ELSs) represent purpose-driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin-based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field |
|---|---|
| Description: | Date Revised 19.03.2025 published: Print-Electronic Citation Status Publisher |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202416260 |