COX-2 Inhibitor Prediction With KNIME : A Codeless Automated Machine Learning-Based Virtual Screening Workflow

© 2025 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 46(2025), 2 vom: 15. Jan., Seite e70030
Auteur principal: Ghosh, Powsali (Auteur)
Autres auteurs: Kumar, Ashok, Singh, Sushil Kumar
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Cyclooxygenase‐2 inhibitor KNIME drug discovery machine learning virtual screening Cyclooxygenase 2 Inhibitors Cyclooxygenase 2 EC 1.14.99.1
LEADER 01000caa a22002652c 4500
001 NLM382795873
003 DE-627
005 20250509171657.0
007 cr uuu---uuuuu
008 250507s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.70030  |2 doi 
028 5 2 |a pubmed25n1392.xml 
035 |a (DE-627)NLM382795873 
035 |a (NLM)39797538 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghosh, Powsali  |e verfasserin  |4 aut 
245 1 0 |a COX-2 Inhibitor Prediction With KNIME  |b A Codeless Automated Machine Learning-Based Virtual Screening Workflow 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.04.2025 
500 |a Date Revised 30.04.2025 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2025 Wiley Periodicals LLC. 
520 |a Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure. In this study, we developed an automated KNIME workflow for predicting the COX-2 inhibitory potential of novel molecules by building a multi-level ensemble model constructed with five machine learning algorithms (i.e., Logistic Regression, K-Nearest Neighbors, Decision Tree, Random Forest, and Extreme Gradient Boosting) and various molecular and fingerprint descriptors (i.e., AtomPair, Avalon, MACCS, Morgan, RDKit, and Pattern). Post-applicability domain filtering, the final majority voting-based ensemble model achieved 90.0% balanced accuracy, 87.7% precision, and 86.4% recall on the external validation set. The freely accessible workflow empowers users to swiftly and effortlessly predict COX-2 inhibitors, eliminating the need for any prior knowledge in machine learning, coding, or statistical modeling, significantly broadening its accessibility. While beginners can seamlessly use the tool as is, experienced KNIME users can leverage it as a foundation to build advanced workflows, driving further research and innovation 
650 4 |a Journal Article 
650 4 |a Cyclooxygenase‐2 inhibitor 
650 4 |a KNIME 
650 4 |a drug discovery 
650 4 |a machine learning 
650 4 |a virtual screening 
650 7 |a Cyclooxygenase 2 Inhibitors  |2 NLM 
650 7 |a Cyclooxygenase 2  |2 NLM 
650 7 |a EC 1.14.99.1  |2 NLM 
700 1 |a Kumar, Ashok  |e verfasserin  |4 aut 
700 1 |a Singh, Sushil Kumar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 46(2025), 2 vom: 15. Jan., Seite e70030  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:46  |g year:2025  |g number:2  |g day:15  |g month:01  |g pages:e70030 
856 4 0 |u http://dx.doi.org/10.1002/jcc.70030  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2025  |e 2  |b 15  |c 01  |h e70030