Tailoring Biopolymers for Electronic Skins : Materials Design and Applications

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 01. Dez., Seite e2413112
1. Verfasser: Zhu, Hong (VerfasserIn)
Weitere Verfasser: Wang, Jinpei, Yang, Xiao, Zhang, Baoping, Wang, Zuankai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review biopolymers‐derived e‐skins nature‐inspired engineering skin‐adaptivity
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
The past few years have witnessed the rapid exploration of natural and synthetic materials to construct electronic skins (e-skins) to emulate the multisensory functions of human skins driven by promising applications. Among various materials employed in functional e-skins, biopolymers are particularly notable for their exceptional biocompatibility and abundant resources. Despite remarkable progress in engineering biopolymeric materials, a timely and holistic review focusing on the design, synthesis, and modification of biopolymers tailored for biopolymers-derived e-skins (Bp-E-Skins) is lacking. In this review, the key attributes of biopolymers are introduced to establish a fundamental understanding fordeveloping functional Bp-E-Skins. Next, the recent progress in harnessing various natural and synthetic biopolymers as building blocks for constructing Bp-E-Skins is systematically discussed, providing insights into maximizing the distinctive attributes of biopolymers. Subsequently, the benefits of nature-inspired Bp-E-Skins achieved through heterogeneous composite and structural engineering are highlighted, infusing fresh momentum into the advancement of e-skins. Then, the promising applications of Bp-E-Skins in multisensory functions are summarized, including both local monitoring and remote teleoperation, as well as sustainable energy harvesting that empowers e-skins. Finally, the remaining fundamental and technical challenges in advancing Bp-E-Skins are presented to provoke future designs that emulate and even go beyond human skins
Beschreibung:Date Revised 02.12.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202413112