Eco-Friendly High-Performance Symmetric All-COF/Graphene Aqueous Zinc-Ion Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 52 vom: 15. Dez., Seite e2414379
1. Verfasser: Yi, Pengshu (VerfasserIn)
Weitere Verfasser: Li, Zhiheng, Ma, Longli, Feng, Bingjian, Liu, Zhu, Liu, Yongshuai, Lu, Wenyi, Cao, Shaochong, Fang, Huayi, Ye, Mingxin, Shen, Jianfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aqueous battery covalent organic frameworks high rate performance organic cathode symmetric all‐organic battery
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Developing high-performance aqueous symmetric all-organic batteries (SAOBs) by replacing metal-based batteries or batteries with organic electrolytes is highly attractive to achieve a greener rechargeable world. However, such a new energy storage system still exhibits unsatisfactory rate capability and cycling stability due to the limitations in electrode materials screening. Here, a novel covalent organic framework (COF) containing abundant CN and CO for the electrode material is designed, which is combined with graphene and assembled into all-COF/graphene batteries for the first time. Moreover, the co-storage of Zn2+ and H+ in COF can be achieved in a mild aqueous electrolyte. Impressively, benefiting from the extended porous structure of COF, plentiful active reaction sites, more extensive electron delocalization from CO modification at molecular level, as well as enhanced fast H+ storage capacity of graphene and CO in COF, this kind of SAOBs show excellent cycle life and high rate performance (over 15000 cycles with a capacity of 80 mAh g-1 at a high current density of 5 A g-1 in pouch cell). This work will open a new window for the design of high-performance aqueous organic batteries, further moving toward a more eco-friendly electrochemical world
Beschreibung:Date Revised 28.12.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202414379