Multi-scale Part-based Feature Representation for 3D Domain Generalization and Adaptation

Deep networks on 3D point clouds have achieved remarkable success in 3D classification, but they are vulnerable to geometric variations resulting from inconsistent data acquisition procedures. This leads to challenging 3D domain generalization and adaptation tasks, aiming to tackle the challenge tha...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 11. Nov.
Auteur principal: Wei, Xin (Auteur)
Autres auteurs: Gu, Xiang, Sun, Jian
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM380139634
003 DE-627
005 20250306215435.0
007 cr uuu---uuuuu
008 241115s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3496670  |2 doi 
028 5 2 |a pubmed25n1266.xml 
035 |a (DE-627)NLM380139634 
035 |a (NLM)39527440 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Xin  |e verfasserin  |4 aut 
245 1 0 |a Multi-scale Part-based Feature Representation for 3D Domain Generalization and Adaptation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Deep networks on 3D point clouds have achieved remarkable success in 3D classification, but they are vulnerable to geometric variations resulting from inconsistent data acquisition procedures. This leads to challenging 3D domain generalization and adaptation tasks, aiming to tackle the challenge that the performance of a model trained on a source domain will degrade on an out-of-distribution target domain. In this paper, we introduce a novel Multi-Scale Part-based feature Representation, dubbed MSPR, as a generalizable representation for point cloud domain generalization and adaptation. Rather than relying on the global point cloud feature representation, we align the part-level features of shapes at different scales to a set of learnable part-template features, which can encode local geometric structures shared between the source and the target domains. Specifically, we construct a part-template feature space shared between source and target domains. Shapes from different domains are organized into part-level features at various scales and then aligned to the part-template features. To leverage the generalization ability of small-scale parts and the discrimination ability of large-scale parts, we further design a cross-scale feature fusion module to exchange information between aligned part-based features at different scales. The fused part-based representations are finally aggregated by a part-based feature aggregation module. To improve the robustness of the aligned part-based representations and global shape representation to geometry variations, we further propose a Contrastive Learning framework on Shape Representation (CLSR), applied to both 3D domain generalization and adaptation tasks. We conduct experiments on 3D domain generalization and adaptation benchmarks for point cloud classification. Experimental results demonstrate the effectiveness of our proposed approach, outperforming the previous state-of-the-art methods for both domain generalization and adaptation tasks. Ablation studies confirm the effectiveness of the proposed components in our model 
650 4 |a Journal Article 
700 1 |a Gu, Xiang  |e verfasserin  |4 aut 
700 1 |a Sun, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 11. Nov.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2024  |g day:11  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3496670  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 11  |c 11