|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM378971972 |
003 |
DE-627 |
005 |
20241206232106.0 |
007 |
cr uuu---uuuuu |
008 |
241016s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202409040
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1623.xml
|
035 |
|
|
|a (DE-627)NLM378971972
|
035 |
|
|
|a (NLM)39410727
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Hanxi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Boolean Computation in Single-Transistor Neuron
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.12.2024
|
500 |
|
|
|a Date Revised 05.12.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Brain neurons exhibit far more sophisticated and powerful information-processing capabilities than the simple integrators commonly modeled in neuromorphic computing. A biological neuron can in fact efficiently perform Boolean algebra, including linear nonseparable operations. Traditional logic circuits require more than a dozen transistors combined as NOT, AND, and OR gates to implement XOR. Lacking biological competency, artificial neural networks require multilayered solutions to exercise XOR operation. Here, it is shown that a single-transistor neuron, harnessing the intrinsic ambipolarity of graphene and ionic filamentary dynamics, can enable in situ reconfigurable multiple Boolean operations from linear separable to linear nonseparable in an ultra-compact design. By leveraging the spatiotemporal integration of inputs, bio-realistic spiking-dependent Boolean computation is fully realized, rivaling the efficiency of a human brain. Furthermore, a soft-XOR-based neural network via algorithm-hardware co-design, showcasing substantial performance improvement, is demonstrated. These results demonstrate how the artificial neuron, in the ultra-compact form of a single transistor, may function as a powerful platform for Boolean operations. These findings are anticipated to be a starting point for implementing more sophisticated computations at the individual transistor neuron level, leading to super-scalable neural networks for resource-efficient brain-inspired information processing
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a artificial intelligence
|
650 |
|
4 |
|a boolean algebra
|
650 |
|
4 |
|a neural network
|
650 |
|
4 |
|a neuromorphic computing
|
650 |
|
4 |
|a neuron model
|
650 |
|
4 |
|a reconfigurable logic
|
650 |
|
7 |
|a Graphite
|2 NLM
|
650 |
|
7 |
|a 7782-42-5
|2 NLM
|
700 |
1 |
|
|a Hu, Jiayang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yishu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Anzhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Ge
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yance
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chai, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Qian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Hailiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Shiman
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Jiachao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Bin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 49 vom: 16. Dez., Seite e2409040
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:49
|g day:16
|g month:12
|g pages:e2409040
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202409040
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 49
|b 16
|c 12
|h e2409040
|