Boolean Computation in Single-Transistor Neuron

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 49 vom: 16. Dez., Seite e2409040
1. Verfasser: Li, Hanxi (VerfasserIn)
Weitere Verfasser: Hu, Jiayang, Zhang, Yishu, Chen, Anzhe, Lin, Li, Chen, Ge, Chen, Yance, Chai, Jian, He, Qian, Wang, Hailiang, Huang, Shiman, Zhou, Jiachao, Xu, Yang, Yu, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article artificial intelligence boolean algebra neural network neuromorphic computing neuron model reconfigurable logic Graphite 7782-42-5
LEADER 01000caa a22002652 4500
001 NLM378971972
003 DE-627
005 20241206232106.0
007 cr uuu---uuuuu
008 241016s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202409040  |2 doi 
028 5 2 |a pubmed24n1623.xml 
035 |a (DE-627)NLM378971972 
035 |a (NLM)39410727 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Hanxi  |e verfasserin  |4 aut 
245 1 0 |a Boolean Computation in Single-Transistor Neuron 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.12.2024 
500 |a Date Revised 05.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Brain neurons exhibit far more sophisticated and powerful information-processing capabilities than the simple integrators commonly modeled in neuromorphic computing. A biological neuron can in fact efficiently perform Boolean algebra, including linear nonseparable operations. Traditional logic circuits require more than a dozen transistors combined as NOT, AND, and OR gates to implement XOR. Lacking biological competency, artificial neural networks require multilayered solutions to exercise XOR operation. Here, it is shown that a single-transistor neuron, harnessing the intrinsic ambipolarity of graphene and ionic filamentary dynamics, can enable in situ reconfigurable multiple Boolean operations from linear separable to linear nonseparable in an ultra-compact design. By leveraging the spatiotemporal integration of inputs, bio-realistic spiking-dependent Boolean computation is fully realized, rivaling the efficiency of a human brain. Furthermore, a soft-XOR-based neural network via algorithm-hardware co-design, showcasing substantial performance improvement, is demonstrated. These results demonstrate how the artificial neuron, in the ultra-compact form of a single transistor, may function as a powerful platform for Boolean operations. These findings are anticipated to be a starting point for implementing more sophisticated computations at the individual transistor neuron level, leading to super-scalable neural networks for resource-efficient brain-inspired information processing 
650 4 |a Journal Article 
650 4 |a artificial intelligence 
650 4 |a boolean algebra 
650 4 |a neural network 
650 4 |a neuromorphic computing 
650 4 |a neuron model 
650 4 |a reconfigurable logic 
650 7 |a Graphite  |2 NLM 
650 7 |a 7782-42-5  |2 NLM 
700 1 |a Hu, Jiayang  |e verfasserin  |4 aut 
700 1 |a Zhang, Yishu  |e verfasserin  |4 aut 
700 1 |a Chen, Anzhe  |e verfasserin  |4 aut 
700 1 |a Lin, Li  |e verfasserin  |4 aut 
700 1 |a Chen, Ge  |e verfasserin  |4 aut 
700 1 |a Chen, Yance  |e verfasserin  |4 aut 
700 1 |a Chai, Jian  |e verfasserin  |4 aut 
700 1 |a He, Qian  |e verfasserin  |4 aut 
700 1 |a Wang, Hailiang  |e verfasserin  |4 aut 
700 1 |a Huang, Shiman  |e verfasserin  |4 aut 
700 1 |a Zhou, Jiachao  |e verfasserin  |4 aut 
700 1 |a Xu, Yang  |e verfasserin  |4 aut 
700 1 |a Yu, Bin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 49 vom: 16. Dez., Seite e2409040  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:49  |g day:16  |g month:12  |g pages:e2409040 
856 4 0 |u http://dx.doi.org/10.1002/adma.202409040  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 49  |b 16  |c 12  |h e2409040