Error Model and Concise Temporal Network for Indirect Illumination in 3D Reconstruction

3D reconstruction is a fundamental task in robotics and AI, providing a prerequisite for many related applications. Fringe projection profilometry is an efficient and non-contact method for generating 3D point clouds out of 2D images. However, during the actual measurement, it is inevitable to exper...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 17., Seite 5849-5863
1. Verfasser: Chen, Yuchong (VerfasserIn)
Weitere Verfasser: Yao, Pengcheng, Gao, Rui, Zhang, Wei, Gai, Shaoyan, Yu, Jian, Da, Feipeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM378648349
003 DE-627
005 20241017232246.0
007 cr uuu---uuuuu
008 241009s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3472502  |2 doi 
028 5 2 |a pubmed24n1570.xml 
035 |a (DE-627)NLM378648349 
035 |a (NLM)39378251 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yuchong  |e verfasserin  |4 aut 
245 1 0 |a Error Model and Concise Temporal Network for Indirect Illumination in 3D Reconstruction 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D reconstruction is a fundamental task in robotics and AI, providing a prerequisite for many related applications. Fringe projection profilometry is an efficient and non-contact method for generating 3D point clouds out of 2D images. However, during the actual measurement, it is inevitable to experiment with translucent objects, such as skin, marble, and fruit. Indirect illumination from these objects has substantially compromised the precision of 3D reconstruction via the contamination of 2D images. This paper presents a fast and accurate approach to correct for indirect illumination. The essential idea is to design a highly suitable network architecture founded on a precise error model that facilitates accurate error rectification. Initially, our method transforms the error generated by indirect illumination into a sine series. Based on this error model, the multilayer perceptron is more effective in error correction than traditional methods and convolutional neural networks. Our network was trained solely on simulated data but was tested on authentic images. Three sets of experiments, including two sets of comparison experiments, indicate that the designed network can efficiently rectify the error induced by indirect illumination 
650 4 |a Journal Article 
700 1 |a Yao, Pengcheng  |e verfasserin  |4 aut 
700 1 |a Gao, Rui  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Gai, Shaoyan  |e verfasserin  |4 aut 
700 1 |a Yu, Jian  |e verfasserin  |4 aut 
700 1 |a Da, Feipeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 17., Seite 5849-5863  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:17  |g pages:5849-5863 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3472502  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 17  |h 5849-5863