Amorphous-Crystalline Interface Induced Internal Electric Fields for Electrochromic Smart Window

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 47 vom: 15. Nov., Seite e2410355
Auteur principal: Zhang, Shi (Auteur)
Autres auteurs: Han, Xiao, Liu, Xiaocheng, Huang, Zixiang, Wang, Pinyi, Sheng, Sizhe, Wu, Geng, He, Jiachuan, Guo, Jingjing, Zheng, Xusheng, Li, Hai, Liu, Jian-Wei, Hong, Xun
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article diffusion barrier electrochromic heterointerface internal electric field
Description
Résumé:© 2024 Wiley‐VCH GmbH.
Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets. Kelvin probe force microscopy (KPFM) exhibits an intense surface potential distribution, demonstrating the presence of internal electric fields. Density functional theory (DFT) calculations confirm that the amorphous-crystalline heterointerfaces can generate internal electric fields and reduce diffusion barriers of lithium ions. As a result, the amorphous-crystalline titanium dioxide nanosheets exhibit better coloration efficiency (35.1 cm2 C-1) than pure amorphous and crystalline titanium dioxide nanosheets
Description:Date Revised 25.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202410355