On-Chip Synthesis of Quasi-2D Semimetals from Multi-Layer Chalcogenides
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 46 vom: 01. Nov., Seite e2410815 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D materials Kagome‐lattice intimate contacts on‐chip synthesis semimetals |
Zusammenfassung: | © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. Reducing the dimensions of materials from three to two, or quasi-two, provides a fertile platform for exploring emergent quantum phenomena and developing next-generation electronic devices. However, growing high-quality, ultrathin, quasi2D materials in a templated fashion on an arbitrary substrate is challenging. Here, the study demonstrates a simple and reproducible on-chip approach for synthesizing non-layered, nanometer-thick, quasi-2D semimetals. In one implementation, this method starts with thin semiconducting InSe flakes of below 20 nm in thickness with nickel deposited on top, followed by a low-temperature annealing step that results in a controlled transformation of the layered InSe to a non-layered, crystalline semimetal via reaction with the laterally diffusing nickel. Atomic resolution microscopy reveals the transformed semimetal to be Ni3In2Se2 with a Kagome-lattice structure. Moreover, it is demonstrated that this synthesis method is generalizable by transforming 2D layered chalcogenides such as SnS and SnSe employing Ni and Co to non-layered semimetals, paving the way for engineering novel types of devices |
---|---|
Beschreibung: | Date Revised 15.11.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202410815 |