Target Before Shooting : Accurate Anomaly Detection and Localization Under One Millisecond via Cascade Patch Retrieval

In this work, by re-examining the "matching" nature of Anomaly Detection (AD), we propose a novel AD framework that simultaneously enjoys new records of AD accuracy and dramatically high running speed. In this framework, the anomaly detection problem is solved via a cascade patch retrieval...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 11., Seite 5606-5621
1. Verfasser: Li, Hanxi (VerfasserIn)
Weitere Verfasser: Hu, Jianfei, Li, Bo, Chen, Hao, Zheng, Yongbin, Shen, Chunhua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377466786
003 DE-627
005 20241010232434.0
007 cr uuu---uuuuu
008 240912s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3448263  |2 doi 
028 5 2 |a pubmed24n1563.xml 
035 |a (DE-627)NLM377466786 
035 |a (NLM)39259636 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Hanxi  |e verfasserin  |4 aut 
245 1 0 |a Target Before Shooting  |b Accurate Anomaly Detection and Localization Under One Millisecond via Cascade Patch Retrieval 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, by re-examining the "matching" nature of Anomaly Detection (AD), we propose a novel AD framework that simultaneously enjoys new records of AD accuracy and dramatically high running speed. In this framework, the anomaly detection problem is solved via a cascade patch retrieval procedure that retrieves the nearest neighbors for each test image patch in a coarse-to-fine fashion. Given a test sample, the top-K most similar training images are first selected based on a robust histogram matching process. Secondly, the nearest neighbor of each test patch is retrieved over the similar geometrical locations on those "most similar images", by using a carefully trained local metric. Finally, the anomaly score of each test image patch is calculated based on the distance to its "nearest neighbor" and the "non-background" probability. The proposed method is termed "Cascade Patch Retrieval" (CPR) in this work. Different from the previous patch-matching-based AD algorithms, CPR selects proper "targets" (reference images and patches) before "shooting" (patch-matching). On the well-acknowledged MVTec AD, BTAD and MVTec-3D AD datasets, the proposed algorithm consistently outperforms all the comparing SOTA methods by remarkable margins, measured by various AD metrics. Furthermore, CPR is extremely efficient. It runs at the speed of 113 FPS with the standard setting while its simplified version only requires less than 1 ms to process an image at the cost of a trivial accuracy drop. The code of CPR is available at https://github.com/flyinghu123/CPR 
650 4 |a Journal Article 
700 1 |a Hu, Jianfei  |e verfasserin  |4 aut 
700 1 |a Li, Bo  |e verfasserin  |4 aut 
700 1 |a Chen, Hao  |e verfasserin  |4 aut 
700 1 |a Zheng, Yongbin  |e verfasserin  |4 aut 
700 1 |a Shen, Chunhua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 11., Seite 5606-5621  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:11  |g pages:5606-5621 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3448263  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 11  |h 5606-5621