Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon
© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 40 vom: 07. Okt., Seite e2405006 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article deterministic single ion implantation donor spin qubits and qudits electronic device engineering scalable atomic arrays silicon quantum computing |
Résumé: | © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. Semiconductor spin qubits combine excellent quantum performance with the prospect of manufacturing quantum devices using industry-standard metal-oxide-semiconductor (MOS) processes. This applies also to ion-implanted donor spins, which further afford exceptional coherence times and large Hilbert space dimension in their nuclear spin. Here multiple strategies are demonstrated and integrated to manufacture scale-up donor-based quantum computers. 31PF2 molecule implants are used to triple the placement certainty compared to 31P ions, while attaining 99.99% confidence in detecting the implant. Similar confidence is retained by implanting heavier atoms such as 123Sb and 209Bi, which represent high-dimensional qudits for quantum information processing, while Sb2 molecules enable deterministic formation of closely-spaced qudits. The deterministic formation of regular arrays of donor atoms with 300 nm spacing is demonstrated, using step-and-repeat implantation through a nano aperture. These methods cover the full gamut of technological requirements for the construction of donor-based quantum computers in silicon |
---|---|
Description: | Date Revised 03.10.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202405006 |