Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 40 vom: 07. Okt., Seite e2405006
Auteur principal: Jakob, Alexander M (Auteur)
Autres auteurs: Robson, Simon G, Firgau, Hannes R, Mourik, Vincent, Schmitt, Vivien, Holmes, Danielle, Posselt, Matthias, Mayes, Edwin L H, Spemann, Daniel, McCallum, Jeffrey C, Morello, Andrea, Jamieson, David N
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article deterministic single ion implantation donor spin qubits and qudits electronic device engineering scalable atomic arrays silicon quantum computing
Description
Résumé:© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Semiconductor spin qubits combine excellent quantum performance with the prospect of manufacturing quantum devices using industry-standard metal-oxide-semiconductor (MOS) processes. This applies also to ion-implanted donor spins, which further afford exceptional coherence times and large Hilbert space dimension in their nuclear spin. Here multiple strategies are demonstrated and integrated to manufacture scale-up donor-based quantum computers. 31PF2 molecule implants are used to triple the placement certainty compared to 31P ions, while attaining 99.99% confidence in detecting the implant. Similar confidence is retained by implanting heavier atoms such as 123Sb and 209Bi, which represent high-dimensional qudits for quantum information processing, while Sb2 molecules enable deterministic formation of closely-spaced qudits. The deterministic formation of regular arrays of donor atoms with 300 nm spacing is demonstrated, using step-and-repeat implantation through a nano aperture. These methods cover the full gamut of technological requirements for the construction of donor-based quantum computers in silicon
Description:Date Revised 03.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202405006