Using convolutional neural network denoising to reduce ambiguity in X-ray coherent diffraction imaging

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 31(2024), Pt 5 vom: 01. Sept., Seite 1340-1345
1. Verfasser: Chu, Kang Ching (VerfasserIn)
Weitere Verfasser: Yeh, Chia Hui, Lin, Jhih Min, Chen, Chun Yu, Cheng, Chi Yuan, Yeh, Yi Qi, Huang, Yu Shan, Tsai, Yi Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article Noise2Noise coherent diffraction imaging machine learning mixed-scale dense network
Beschreibung
Zusammenfassung:open access.
The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions
Beschreibung:Date Revised 05.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1600-5775
DOI:10.1107/S1600577524006519