A Superparamagnetic Composite Hydrogel Scaffold as In Vivo Dynamic Monitorable Theranostic Platform for Osteoarthritis Regeneration

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 35 vom: 14. Aug., Seite e2405641
Auteur principal: Rong, Mayifei (Auteur)
Autres auteurs: Liu, Dingge, Xu, Xiaoguang, Li, Ang, Bai, Yihua, Yang, Gang, Liu, Kaiping, Zhang, Zhihua, Wang, Langran, Wang, Kai, Lu, Liying, Jiang, Yong, Liu, Ji, Zhang, Xin
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article composite scaffolds hydrogel osteoarthritis superparamagnetic particles tissue engineering Hydrogels Hyaluronic Acid 9004-61-9 Magnetite Nanoparticles plus... Vascular Endothelial Growth Factor A Methacrylates Durapatite 91D9GV0Z28 glycidyl methacrylate R8WN29J8VF Epoxy Compounds
LEADER 01000caa a22002652c 4500
001 NLM37365412X
003 DE-627
005 20250306073419.0
007 cr uuu---uuuuu
008 240615s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202405641  |2 doi 
028 5 2 |a pubmed25n1244.xml 
035 |a (DE-627)NLM37365412X 
035 |a (NLM)38877353 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rong, Mayifei  |e verfasserin  |4 aut 
245 1 2 |a A Superparamagnetic Composite Hydrogel Scaffold as In Vivo Dynamic Monitorable Theranostic Platform for Osteoarthritis Regeneration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.08.2024 
500 |a Date Revised 28.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Osteoarthritis (OA) is a prevalent disease, characterized by subchondral fractures in its initial stages, which has no precise and specific treatment now. Here, a novel multifunctional scaffold is synthesized by photopolymerizing glycidyl methacrylate-modified hyaluronic acid (GMHA) as the matrix in the presence of hollow porous magnetic microspheres based on hydroxyapatite. In vivo subchondral bone repairing results demonstrate that the scaffold's meticulous design has most suitable properties for subchondral bone repair. The porous structure of inorganic particles within the scaffold facilitates efficient transport of loaded exogenous vascular endothelial growth factor (VEGF). The Fe3O4 nanoparticles assembled in microspheres promote the osteogenic differentiation of bone marrow mesenchymal stem cells and accelerate the new bone generation. These features enable the scaffold to exhibit favorable subchondral bone repair properties and attain high cartilage repair scores. The therapy results prove that the subchondral bone support considerably influences the upper cartilage repair process. Furthermore, magnetic resonance imaging monitoring demonstrates that Fe3O4 nanoparticles, which are gradually replaced by new bone during osteochondral defect repair, allow a noninvasive and radiation-free assessment to track the newborn bone during the OA repair process. The composite hydrogel scaffold (CHS) provides a versatile platform for biomedical applications in OA treatment 
650 4 |a Journal Article 
650 4 |a composite scaffolds 
650 4 |a hydrogel 
650 4 |a osteoarthritis 
650 4 |a superparamagnetic particles 
650 4 |a tissue engineering 
650 7 |a Hydrogels  |2 NLM 
650 7 |a Hyaluronic Acid  |2 NLM 
650 7 |a 9004-61-9  |2 NLM 
650 7 |a Magnetite Nanoparticles  |2 NLM 
650 7 |a Vascular Endothelial Growth Factor A  |2 NLM 
650 7 |a Methacrylates  |2 NLM 
650 7 |a Durapatite  |2 NLM 
650 7 |a 91D9GV0Z28  |2 NLM 
650 7 |a glycidyl methacrylate  |2 NLM 
650 7 |a R8WN29J8VF  |2 NLM 
650 7 |a Epoxy Compounds  |2 NLM 
700 1 |a Liu, Dingge  |e verfasserin  |4 aut 
700 1 |a Xu, Xiaoguang  |e verfasserin  |4 aut 
700 1 |a Li, Ang  |e verfasserin  |4 aut 
700 1 |a Bai, Yihua  |e verfasserin  |4 aut 
700 1 |a Yang, Gang  |e verfasserin  |4 aut 
700 1 |a Liu, Kaiping  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhihua  |e verfasserin  |4 aut 
700 1 |a Wang, Langran  |e verfasserin  |4 aut 
700 1 |a Wang, Kai  |e verfasserin  |4 aut 
700 1 |a Lu, Liying  |e verfasserin  |4 aut 
700 1 |a Jiang, Yong  |e verfasserin  |4 aut 
700 1 |a Liu, Ji  |e verfasserin  |4 aut 
700 1 |a Zhang, Xin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 35 vom: 14. Aug., Seite e2405641  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:35  |g day:14  |g month:08  |g pages:e2405641 
856 4 0 |u http://dx.doi.org/10.1002/adma.202405641  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 35  |b 14  |c 08  |h e2405641