Eicosapentaenoic acid : New insights into an oomycete-driven elicitor to enhance grapevine immunity

Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 213(2024) vom: 10. Aug., Seite 108799
1. Verfasser: Laureano, Gonçalo (VerfasserIn)
Weitere Verfasser: Matos, Ana Rita, Figueiredo, Andreia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Eicosapentaenoic acid Elicitors Fatty acids Jasmonic acid Lipid-signalling Plasmopara viticola Vitis vinifera Eicosapentaenoic Acid AAN7QOV9EA mehr... Oxylipins jasmonic acid 6RI5N05OWW Cyclopentanes
Beschreibung
Zusammenfassung:Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
The widespread use of pesticides in agriculture remains a matter of major concern, prompting a critical need for alternative and sustainable practices. To address this, the use of lipid-derived molecules as elicitors to induce defence responses in grapevine plants was accessed. A Plasmopara viticola fatty acid (FA), eicosapentaenoic acid (EPA) naturally present in oomycetes, but absent in plants, was applied by foliar spraying to the leaves of the susceptible grapevine cultivar (Vitis vinifera cv. Trincadeira), while a host lipid derived phytohormone, jasmonic acid (JA) was used as a molecule known to trigger host defence. Their potential as defence triggers was assessed by analysing the expression of a set of genes related to grapevine defence and evaluating the FA modulation upon elicitation. JA prompted grapevine immunity, altering lipid metabolism and up-regulating the expression of several defence genes. EPA also induced a myriad of responses to the levels typically observed in tolerant plants. Its application activated the transcription of defence gene's regulators, pathogen-related genes and genes involved in phytoalexins biosynthesis. Moreover, EPA application resulted in the alteration of the leaf FA profile, likely by impacting biosynthetic, unsaturation and turnover processes. Although both molecules were able to trigger grapevine defence mechanisms, EPA induced a more robust and prolonged response. This finding establishes EPA as a promising elicitor for an effectively managing grapevine downy mildew diseases
Beschreibung:Date Completed 05.07.2024
Date Revised 05.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.108799