Adaptive Processing Enabled by Sodium Alginate Based Complementary Memristor for Neuromorphic Sensory System

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 32 vom: 31. Aug., Seite e2314156
1. Verfasser: Shi, Jiajuan (VerfasserIn)
Weitere Verfasser: Lin, Ya, Wang, Zhongqiang, Shan, Xuanyu, Tao, Ye, Zhao, Xiaoning, Xu, Haiyang, Liu, Yichun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Weber's law adaptive processing complementary memristor desensitization neuromorphic sensory system
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Adaptive processing allows sensory systems to autonomically adjust their sensitivity with exposure to a constant sensory stimulus and thus organisms to adapt to environmental variations. Bioinspired electronics with adaptive functions are highly desirable for the development of neuromorphic sensory systems (NSSs). Herein, the functions of desensitization and sensitivity changing with background intensity (i.e., Weber's law), as two fundamental cues of sensory adaptation, are biorealistically demonstrated in an Ag nanowire (NW)-embedded sodium alginate (SA) based complementary memristor. In particular, Weber's law is experimentally emulated in a single complementary memristor. Furthermore, three types of adaptive NSS unit are constructed to realize a multiple perceptual capability that processes the stimuli of illuminance, temperature, and pressure signals. Taking neuromorphic vision as an example, scotopic and photopic adaptation functions are well reproduced for image enhancement against dark and bright backgrounds. Importantly, an NSS system with multisensory integration function is demonstrated by combining light and pressure spikes, where the accuracy of pattern recognition is obviously enhanced relative to that of an individual sense. This work offers a new strategy for developing neuromorphic electronics with adaptive functions and paves the way toward developing a highly efficient NSS
Beschreibung:Date Revised 08.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202314156