Learning nonparametric ordinary differential equations from noisy data

Learning nonparametric systems of Ordinary Differential Equations (ODEs) x˙=f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Le...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 507(2024) vom: 15. Mai
1. Verfasser: Lahouel, Kamel (VerfasserIn)
Weitere Verfasser: Wells, Michael, Rielly, Victor, Lew, Ethan, Lovitza, David, Jedynak, Bruno M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM372344267
003 DE-627
005 20240517232938.0
007 cr uuu---uuuuu
008 240515s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2024.112971  |2 doi 
028 5 2 |a pubmed24n1410.xml 
035 |a (DE-627)NLM372344267 
035 |a (NLM)38745873 
035 |a (PII)112971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lahouel, Kamel  |e verfasserin  |4 aut 
245 1 0 |a Learning nonparametric ordinary differential equations from noisy data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Learning nonparametric systems of Ordinary Differential Equations (ODEs) x˙=f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the L2 distance between x and its estimator. Experiments are provided for the FitzHugh-Nagumo oscillator, the Lorenz system, and for predicting the Amyloid level in the cortex of aging subjects. In all cases, we show competitive results compared with the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Wells, Michael  |e verfasserin  |4 aut 
700 1 |a Rielly, Victor  |e verfasserin  |4 aut 
700 1 |a Lew, Ethan  |e verfasserin  |4 aut 
700 1 |a Lovitza, David  |e verfasserin  |4 aut 
700 1 |a Jedynak, Bruno M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 507(2024) vom: 15. Mai  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:507  |g year:2024  |g day:15  |g month:05 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2024.112971  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 507  |j 2024  |b 15  |c 05