|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM372344267 |
003 |
DE-627 |
005 |
20240517232938.0 |
007 |
cr uuu---uuuuu |
008 |
240515s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.jcp.2024.112971
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1410.xml
|
035 |
|
|
|a (DE-627)NLM372344267
|
035 |
|
|
|a (NLM)38745873
|
035 |
|
|
|a (PII)112971
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lahouel, Kamel
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Learning nonparametric ordinary differential equations from noisy data
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 17.05.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Learning nonparametric systems of Ordinary Differential Equations (ODEs) x˙=f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the L2 distance between x and its estimator. Experiments are provided for the FitzHugh-Nagumo oscillator, the Lorenz system, and for predicting the Amyloid level in the cortex of aging subjects. In all cases, we show competitive results compared with the state-of-the-art
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Wells, Michael
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rielly, Victor
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lew, Ethan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lovitza, David
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jedynak, Bruno M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational physics
|d 1986
|g 507(2024) vom: 15. Mai
|w (DE-627)NLM098188844
|x 0021-9991
|7 nnns
|
773 |
1 |
8 |
|g volume:507
|g year:2024
|g day:15
|g month:05
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.jcp.2024.112971
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 507
|j 2024
|b 15
|c 05
|