Learning nonparametric ordinary differential equations from noisy data

Learning nonparametric systems of Ordinary Differential Equations (ODEs) x˙=f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Le...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 507(2024) vom: 15. Mai
1. Verfasser: Lahouel, Kamel (VerfasserIn)
Weitere Verfasser: Wells, Michael, Rielly, Victor, Lew, Ethan, Lovitza, David, Jedynak, Bruno M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Learning nonparametric systems of Ordinary Differential Equations (ODEs) x˙=f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the L2 distance between x and its estimator. Experiments are provided for the FitzHugh-Nagumo oscillator, the Lorenz system, and for predicting the Amyloid level in the cortex of aging subjects. In all cases, we show competitive results compared with the state-of-the-art
Beschreibung:Date Revised 17.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0021-9991
DOI:10.1016/j.jcp.2024.112971