Less is More : Asymmetric D-A Type Agent to Achieve Dynamic Self-Assembled Nanoaggregates for Long-Acting Photodynamic Therapy

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 28 vom: 02. Juli, Seite e2402434
1. Verfasser: Xu, Ruohan (VerfasserIn)
Weitere Verfasser: Shen, Qifei, Zhang, Peijuan, Wang, Zhi, Xu, Yanzi, Meng, Lingjie, Dang, Dongfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article D–A architecture aggregation‐induced emission organic nanoaggregate photodynamic therapy self‐assembly Reactive Oxygen Species Photosensitizing Agents
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
To enhance the phototheranostic performance, agents with high reactive oxygen species (ROS) generation, good tumor-targeting ability, and prolonged retention are urgently needed. However, symmetric donor-acceptor (D-A) type agents usually produce spherical nanoaggregates, leading to good tumor targeting but inferior retention. Rod-like nanoaggregates are desired to extend their retention in tumors; however, this remains a challenge. In particular, agents with dynamically changeable shapes that integrate merits of different morphologies are seldomly reported. Therefore, self-assembled organic nanoaggregates with smart shape tunability are designed here using an asymmetric D-A type TIBT. The photoluminescence quantum yield in solids is up to 52.24% for TIBT. TIBT also exhibits high ROS generation in corresponding nanoaggregates (TIBT-NCs). Moreover, dynamic self-assembly in shape changing from nanospheres to nanorods occurrs in TIBT-NCs, contributing to the enhancement of ROS quantum yield from 0.55 to 0.72. In addition, dynamic self-assembly can be observed for both in vitro and in vivo, conferring TIBT-NCs with strong tumor targeting and prolonged retention. Finally, efficient photodynamic therapy to inhibit tumor growth is achieved in TIBT-NCs, with an inhibition rate of 90%. This work demonstrates that asymmetric D-A type agents can play significant roles in forming self-assembled organic nanoaggregates, thus showing great potential in long-acting cancer therapy
Beschreibung:Date Completed 12.07.2024
Date Revised 12.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202402434