Monocular BEV Perception of Road Scenes via Front-to-Top View Projection

HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to expensive sensors and time-consuming computation. Camera-based methods usually need to perform road segmentation and view transformation separately, which often causes distortion and missing content. To p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 19. Aug., Seite 6109-6125
1. Verfasser: Liu, Wenxi (VerfasserIn)
Weitere Verfasser: Li, Qi, Yang, Weixiang, Cai, Jiaxin, Yu, Yuanlong, Ma, Yuexin, He, Shengfeng, Pan, Jia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36988406X
003 DE-627
005 20240807232507.0
007 cr uuu---uuuuu
008 240319s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3377812  |2 doi 
028 5 2 |a pubmed24n1494.xml 
035 |a (DE-627)NLM36988406X 
035 |a (NLM)38498754 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Wenxi  |e verfasserin  |4 aut 
245 1 0 |a Monocular BEV Perception of Road Scenes via Front-to-Top View Projection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a HD map reconstruction is crucial for autonomous driving. LiDAR-based methods are limited due to expensive sensors and time-consuming computation. Camera-based methods usually need to perform road segmentation and view transformation separately, which often causes distortion and missing content. To push the limits of the technology, we present a novel framework that reconstructs a local map formed by road layout and vehicle occupancy in the bird's-eye view given a front-view monocular image only. We propose a front-to-top view projection (FTVP) module, which takes the constraint of cycle consistency between views into account and makes full use of their correlation to strengthen the view transformation and scene understanding. In addition, we apply multi-scale FTVP modules to propagate the rich spatial information of low-level features to mitigate spatial deviation of the predicted object location. Experiments on public benchmarks show that our method achieves various tasks on road layout estimation, vehicle occupancy estimation, and multi-class semantic estimation, at a performance level comparable to the state-of-the-arts, while maintaining superior efficiency 
650 4 |a Journal Article 
700 1 |a Li, Qi  |e verfasserin  |4 aut 
700 1 |a Yang, Weixiang  |e verfasserin  |4 aut 
700 1 |a Cai, Jiaxin  |e verfasserin  |4 aut 
700 1 |a Yu, Yuanlong  |e verfasserin  |4 aut 
700 1 |a Ma, Yuexin  |e verfasserin  |4 aut 
700 1 |a He, Shengfeng  |e verfasserin  |4 aut 
700 1 |a Pan, Jia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 9 vom: 19. Aug., Seite 6109-6125  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:9  |g day:19  |g month:08  |g pages:6109-6125 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3377812  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 9  |b 19  |c 08  |h 6109-6125