A model for bimodal rates and proportions

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 51(2024), 4 vom: 23., Seite 664-681
Auteur principal: Vila, Roberto (Auteur)
Autres auteurs: Alfaia, Lucas, Menezes, André F B, Çankaya, Mehmet N, Bourguignon, Marcelo
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Bimodal model beta distribution bimodality bounded data maximum likelihood regression model
LEADER 01000caa a22002652c 4500
001 NLM369663349
003 DE-627
005 20250305223443.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2146661  |2 doi 
028 5 2 |a pubmed25n1231.xml 
035 |a (DE-627)NLM369663349 
035 |a (NLM)38476621 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vila, Roberto  |e verfasserin  |4 aut 
245 1 2 |a A model for bimodal rates and proportions 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.03.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The beta model is the most important distribution for fitting data with the unit interval. However, the beta distribution is not suitable to model bimodal unit interval data. In this paper, we propose a bimodal beta distribution constructed by using an approach based on the alpha-skew-normal model. We discuss several properties of this distribution, such as bimodality, real moments, entropies and identifiability. Furthermore, we propose a new regression model based on the proposed model and discuss residuals. Estimation is performed by maximum likelihood. A Monte Carlo experiment is conducted to evaluate the performances of these estimators in finite samples with a discussion of the results. An application is provided to show the modelling competence of the proposed distribution when the data sets show bimodality 
650 4 |a Journal Article 
650 4 |a Bimodal model 
650 4 |a beta distribution 
650 4 |a bimodality 
650 4 |a bounded data 
650 4 |a maximum likelihood 
650 4 |a regression model 
700 1 |a Alfaia, Lucas  |e verfasserin  |4 aut 
700 1 |a Menezes, André F B  |e verfasserin  |4 aut 
700 1 |a Çankaya, Mehmet N  |e verfasserin  |4 aut 
700 1 |a Bourguignon, Marcelo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 4 vom: 23., Seite 664-681  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:51  |g year:2024  |g number:4  |g day:23  |g pages:664-681 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2146661  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 4  |b 23  |h 664-681