NesTD-Net : Deep NESTA-Inspired Unfolding Network With Dual-Path Deblocking Structure for Image Compressive Sensing

Deep compressive sensing (CS) has become a prevalent technique for image acquisition and reconstruction. However, existing deep learning (DL)-based CS methods often encounter challenges such as block artifacts and information loss during iterative reconstruction, particularly at low sampling rates,...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 07., Seite 1923-1937
Auteur principal: Gan, Hongping (Auteur)
Autres auteurs: Guo, Zhen, Liu, Feng
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM369319176
003 DE-627
005 20250305214247.0
007 cr uuu---uuuuu
008 240306s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3371351  |2 doi 
028 5 2 |a pubmed25n1230.xml 
035 |a (DE-627)NLM369319176 
035 |a (NLM)38442062 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gan, Hongping  |e verfasserin  |4 aut 
245 1 0 |a NesTD-Net  |b Deep NESTA-Inspired Unfolding Network With Dual-Path Deblocking Structure for Image Compressive Sensing 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep compressive sensing (CS) has become a prevalent technique for image acquisition and reconstruction. However, existing deep learning (DL)-based CS methods often encounter challenges such as block artifacts and information loss during iterative reconstruction, particularly at low sampling rates, resulting in a reduction of reconstructed details. To address these issues, we propose NesTD-Net, an unfolding-based architecture inspired by the NESTA algorithm, designed for image CS. NesTD-Net integrates DL modules into NESTA iterations, forming a deep network that continuously iterates to minimize the l1 -norm CS problem, ensuring high-quality image CS. Utilizing a learned sampling matrix for measurements and an initialization module for initial estimate, NesTD-Net then introduces Iteration Sub-Modules derived from the NESTA algorithm (i.e., Yk , Zk , and Xk ) during reconstruction stages to iteratively solve the l1 -norm CS reconstruction. Additionally, NesTD-Net incorporates a Dual-Path Deblocking Structure (DPDS) to facilitate feature information flow and mitigate block artifacts, enhancing image detail reconstruction. Furthermore, DPDS exhibits remarkable versatility and demonstrates seamless integration with other unfolding-based methods, offering the potential to enhance their performance in image reconstruction. Experimental results demonstrate that our proposed NesTD-Net achieves better performance compared to other state-of-the-art methods in terms of image quality metrics such as SSIM and PSNR, as well as visual perception on several public benchmark datasets 
650 4 |a Journal Article 
700 1 |a Guo, Zhen  |e verfasserin  |4 aut 
700 1 |a Liu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 07., Seite 1923-1937  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:07  |g pages:1923-1937 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3371351  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 07  |h 1923-1937