MuNeRF : Robust Makeup Transfer in Neural Radiance Fields

There has been a high demand for facial makeup transfer tools in fashion e-commerce and virtual avatar generation. Most of the existing makeup transfer methods are based on the generative adversarial networks. Despite their success in makeup transfer for a single image, they struggle to maintain the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 3 vom: 01. März, Seite 1746-1757
1. Verfasser: Yuan, Yu-Jie (VerfasserIn)
Weitere Verfasser: Han, Xinyang, He, Yue, Zhang, Fang-Lue, Gao, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM368765857
003 DE-627
005 20250508052115.0
007 cr uuu---uuuuu
008 240229s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3368443  |2 doi 
028 5 2 |a pubmed25n1332.xml 
035 |a (DE-627)NLM368765857 
035 |a (NLM)38386584 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Yu-Jie  |e verfasserin  |4 aut 
245 1 0 |a MuNeRF  |b Robust Makeup Transfer in Neural Radiance Fields 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a There has been a high demand for facial makeup transfer tools in fashion e-commerce and virtual avatar generation. Most of the existing makeup transfer methods are based on the generative adversarial networks. Despite their success in makeup transfer for a single image, they struggle to maintain the consistency of makeup under different poses and expressions of the same person. In this article, we propose a robust makeup transfer method which consistently transfers the makeup style of a reference image to facial images in any poses and expressions. Our method introduces the implicit 3D representation, neural radiance fields (NeRFs), to ensure the geometric and appearance consistency. It has two separate stages, including one basic NeRF module to reconstruct the geometry from the input facial image sequence, and a makeup module to learn how to transfer the reference makeup style consistently. We propose a novel hybrid makeup loss which is specially designed based on the makeup characteristics to supervise the training of the makeup module. The proposed loss significantly improves the visual quality and faithfulness of the makeup transfer effects. To better align the distribution between the transferred makeup and the reference makeup, a patch-based discriminator that works in the pose-independent UV texture space is proposed to provide more accurate control of the synthesized makeup. Extensive experiments and a user study demonstrate the superiority of our network for a variety of different makeup styles 
650 4 |a Journal Article 
700 1 |a Han, Xinyang  |e verfasserin  |4 aut 
700 1 |a He, Yue  |e verfasserin  |4 aut 
700 1 |a Zhang, Fang-Lue  |e verfasserin  |4 aut 
700 1 |a Gao, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 31(2025), 3 vom: 01. März, Seite 1746-1757  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:31  |g year:2025  |g number:3  |g day:01  |g month:03  |g pages:1746-1757 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3368443  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2025  |e 3  |b 01  |c 03  |h 1746-1757