Pick-and-Place Transform Learning for Fast Multi-View Clustering

To manipulate large-scale data, anchor-based multi-view clustering methods have grown in popularity owing to their linear complexity in terms of the number of samples. However, these existing approaches pay less attention to two aspects. 1) They target at learning a shared affinity matrix by using t...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 1272-1284
Auteur principal: Shen, Qiangqiang (Auteur)
Autres auteurs: Chen, Yongyong, Zhang, Changqing, Tian, Yonghong, Liang, Yongsheng
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM367759896
003 DE-627
005 20250305180040.0
007 cr uuu---uuuuu
008 240130s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3357257  |2 doi 
028 5 2 |a pubmed25n1225.xml 
035 |a (DE-627)NLM367759896 
035 |a (NLM)38285574 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Qiangqiang  |e verfasserin  |4 aut 
245 1 0 |a Pick-and-Place Transform Learning for Fast Multi-View Clustering 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a To manipulate large-scale data, anchor-based multi-view clustering methods have grown in popularity owing to their linear complexity in terms of the number of samples. However, these existing approaches pay less attention to two aspects. 1) They target at learning a shared affinity matrix by using the local information from every single view, yet ignoring the global information from all views, which may weaken the ability to capture complementary information. 2) They do not consider the removal of feature redundancy, which may affect the ability to depict the real sample relationships. To this end, we propose a novel fast multi-view clustering method via pick-and-place transform learning named PPTL, which could capture insightful global features to characterize the sample relationships quickly. Specifically, PPTL first concatenates all the views along the feature direction to produce a global matrix. Considering the redundancy of the global matrix, we design a pick-and-place transform with l2,p -norm regularization to abandon the poor features and consequently construct a compact global representation matrix. Thus, by conducting anchor-based subspace clustering on the compact global representation matrix, PPTL can learn a consensus skinny affinity matrix with a discriminative clustering structure. Numerous experiments performed on small-scale to large-scale datasets demonstrate that our method is not only faster but also achieves superior clustering performance over state-of-the-art methods across a majority of the datasets 
650 4 |a Journal Article 
700 1 |a Chen, Yongyong  |e verfasserin  |4 aut 
700 1 |a Zhang, Changqing  |e verfasserin  |4 aut 
700 1 |a Tian, Yonghong  |e verfasserin  |4 aut 
700 1 |a Liang, Yongsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 1272-1284  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:1272-1284 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3357257  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 1272-1284