Vacancy Defects Inductive Effect of Asymmetrically Coordinated Single-Atom Fe─N3 S1 Active Sites for Robust Electrocatalytic Oxygen Reduction with High Turnover Frequency and Mass Activity

© 2023 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 11 vom: 01. März, Seite e2308243
Auteur principal: Zhao, Yilin (Auteur)
Autres auteurs: Chen, Hsiao-Chien, Ma, Xuelu, Li, Jiaye, Yuan, Qing, Zhang, Peng, Wang, Minmin, Li, Junxi, Li, Min, Wang, Shifu, Guo, Han, Hu, Ruanbo, Tu, Kun-Hua, Zhu, Wei, Li, Xuning, Yang, Xuan, Pan, Yuan
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article controllable synthesis electrocatalysis oxygen reduction reaction single-atom catalyst
Description
Résumé:© 2023 Wiley-VCH GmbH.
The development of facile, efficient synthesis method to construct low-cost and high-performance single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is extremely important, yet still challenging. Herein, an atomically dispersed N, S co-doped carbon with abundant vacancy defects (NSC-vd) anchored Fe single atoms (SAs) is reported and a vacancy defects inductive effect is proposed for promoting electrocatalytic ORR. The optimized catalyst featured of stable Fe─N3 S1 active sites exhibits excellent ORR activity with high turnover frequency and mass activity. In situ Raman, attenuated total reflectance surface enhanced infrared absorption spectroscopy reveal the Fe─N3 S1 active sites exhibit different kinetic mechanisms in acidic and alkaline solutions. Operando X-ray absorption spectra reveal the ORR activity of Fe SAs/NSC-vd catalyst in different electrolyte is closely related to the coordination structure. Theoretical calculation reveals the upshifted d band center of Fe─N3 S1 active sites facilitates the adsorption of O2 and accelerates the kinetics process of *OH reduction. The abundant vacancy defects around the Fe─N3 S1 active sites balance the OOH* formation and *OH reduction, thus synergetically promoting the electrocatalytic ORR process
Description:Date Revised 14.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202308243