Generalized Characteristic Function Loss for Crowd Analysis in the Frequency Domain
Typical approaches that learn crowd density maps are limited to extracting the supervisory information from the loosely organized spatial information in the crowd dot/density maps. This paper tackles this challenge by performing the supervision in the frequency domain. More specifically, we devise a...
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 01. Mai, Seite 2882-2899 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2024
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
| Sujets: | Journal Article |
| Accès en ligne |
Volltext |