Arresting Ion Migration from the ETL Increases Stability in Infrared Light Detectors Based on III-V Colloidal Quantum Dots

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 4 vom: 25. Jan., Seite e2310122
1. Verfasser: Xia, Pan (VerfasserIn)
Weitere Verfasser: Zhu, Tong, Imran, Muhammad, Pina, Joao M, Atan, Ozan, Najarian, Amin Morteza, Chen, Hao, Zhang, Yangning, Jung, Euidae, Biondi, Margherita, Vafaie, Maral, Li, Chongwen, Grater, Luke, Khatri, Aayushi, Singh, Ajay, Hoogland, Sjoerd, Sargent, Edward H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article III-V colloidal quantum dots charge transport layers device operating stability infrared photodetectors
LEADER 01000caa a22002652 4500
001 NLM364751371
003 DE-627
005 20240125231944.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202310122  |2 doi 
028 5 2 |a pubmed24n1270.xml 
035 |a (DE-627)NLM364751371 
035 |a (NLM)37983739 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xia, Pan  |e verfasserin  |4 aut 
245 1 0 |a Arresting Ion Migration from the ETL Increases Stability in Infrared Light Detectors Based on III-V Colloidal Quantum Dots 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a III-V colloidal quantum dots (CQDs) are of interest in infrared photodetection, and recent developments in CQDs synthesis and surface engineering have improved performance. Here this work investigates photodetector stability, finding that the diffusion of zinc ions from charge transport layers (CTLs) into the CQDs active layer increases trap density therein, leading to rapid and irreversible performance loss during operation. In an effort to prevent this, this work introduces organic blocking layers between the CQDs and ZnO layers; but these negatively impact device performance. The device is then, allowing to use a C60:BCP as top electron-transport layer (ETL) for good morphology and process compatibility, and selecting NiOX as the bottom hole-transport layer (HTL). The first round of NiOX -based devices show efficient light response but suffer from high leakage current and a low open-circuit voltage (Voc) due to pinholes. This work introduces poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA) with NiOX NC to form a hybrid HTL, an addition that reduces pinhole formation, interfacial trap density, and bimolecular recombination, enhancing carrier harvesting. The photodetectors achieve 53% external quantum efficiency (EQE) at 970 nm at 1 V applied bias, and they maintain 95% of initial performance after 19 h of continuous illuminated operation. The photodetectors retain over 80% of performance after 80 days of shelf storage 
650 4 |a Journal Article 
650 4 |a III-V colloidal quantum dots 
650 4 |a charge transport layers 
650 4 |a device operating stability 
650 4 |a infrared photodetectors 
700 1 |a Zhu, Tong  |e verfasserin  |4 aut 
700 1 |a Imran, Muhammad  |e verfasserin  |4 aut 
700 1 |a Pina, Joao M  |e verfasserin  |4 aut 
700 1 |a Atan, Ozan  |e verfasserin  |4 aut 
700 1 |a Najarian, Amin Morteza  |e verfasserin  |4 aut 
700 1 |a Chen, Hao  |e verfasserin  |4 aut 
700 1 |a Zhang, Yangning  |e verfasserin  |4 aut 
700 1 |a Jung, Euidae  |e verfasserin  |4 aut 
700 1 |a Biondi, Margherita  |e verfasserin  |4 aut 
700 1 |a Vafaie, Maral  |e verfasserin  |4 aut 
700 1 |a Li, Chongwen  |e verfasserin  |4 aut 
700 1 |a Grater, Luke  |e verfasserin  |4 aut 
700 1 |a Khatri, Aayushi  |e verfasserin  |4 aut 
700 1 |a Singh, Ajay  |e verfasserin  |4 aut 
700 1 |a Hoogland, Sjoerd  |e verfasserin  |4 aut 
700 1 |a Sargent, Edward H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 4 vom: 25. Jan., Seite e2310122  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:4  |g day:25  |g month:01  |g pages:e2310122 
856 4 0 |u http://dx.doi.org/10.1002/adma.202310122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 4  |b 25  |c 01  |h e2310122