Amphiphilic HZSM-5 for Cyclopentene Hydration at the Liquid-Liquid Interface in Pickering Emulsion

Zeolite is considered an ideal catalyst for olefin hydration due to its high specific surface area and abundant acid sites. However, the immiscibility of the water-oil two phases in olefin hydration limits mass transfer, and the side reaction of etherification occurs acutely, resulting in a low yiel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 48 vom: 05. Dez., Seite 17122-17132
1. Verfasser: Bing, Changhao (VerfasserIn)
Weitere Verfasser: Zhang, Xubin, Wang, Fumin, Zhai, Yi, Li, Yongwang, Wang, Kaiwei, Fan, Xiaolu, Zhang, Jinjin, Shen, Qi, He, Xinyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Zeolite is considered an ideal catalyst for olefin hydration due to its high specific surface area and abundant acid sites. However, the immiscibility of the water-oil two phases in olefin hydration limits mass transfer, and the side reaction of etherification occurs acutely, resulting in a low yield of alcohol. Thus, water-oil amphiphilic HZSM-5 was prepared by sulfonating silanized zeolite. The successful introduction of organic and sulfonic acid groups is demonstrated by FT-IR, TG, and water contact angles. Amphiphilic HZSM-5 can stabilize the Pickering emulsion and catalyze cyclopentene hydration at the phase interface. In addition, NH3-TPD and Py-IR show that the amount of strong Bro̷nsted acid sites of zeolites increases significantly after sulfonation. This facilitates the rate-determining step of cyclopentene activation by H+ to form carbocation. Moreover, the nucleophilic side reactions are inhibited by a high concentration of H+. Finally, under the optimized reaction condition, the conversion of cyclopentene can achieve 5.066% with a selectivity of 85.37% to cyclopentanol, which almost reaches the reaction equilibrium
Beschreibung:Date Revised 05.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02020