GQE-Net : A Graph-Based Quality Enhancement Network for Point Cloud Color Attribute

In recent years, point clouds have become increasingly popular for representing three-dimensional (3D) visual objects and scenes. To efficiently store and transmit point clouds, compression methods have been developed, but they often result in a degradation of quality. To reduce color distortion in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 09., Seite 6303-6317
1. Verfasser: Xing, Jinrui (VerfasserIn)
Weitere Verfasser: Yuan, Hui, Hamzaoui, Raouf, Liu, Hao, Hou, Junhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM364353619
003 DE-627
005 20231226095245.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3330086  |2 doi 
028 5 2 |a pubmed24n1214.xml 
035 |a (DE-627)NLM364353619 
035 |a (NLM)37943639 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xing, Jinrui  |e verfasserin  |4 aut 
245 1 0 |a GQE-Net  |b A Graph-Based Quality Enhancement Network for Point Cloud Color Attribute 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, point clouds have become increasingly popular for representing three-dimensional (3D) visual objects and scenes. To efficiently store and transmit point clouds, compression methods have been developed, but they often result in a degradation of quality. To reduce color distortion in point clouds, we propose a graph-based quality enhancement network (GQE-Net) that uses geometry information as an auxiliary input and graph convolution blocks to extract local features efficiently. Specifically, we use a parallel-serial graph attention module with a multi-head graph attention mechanism to focus on important points or features and help them fuse together. Additionally, we design a feature refinement module that takes into account the normals and geometry distance between points. To work within the limitations of GPU memory capacity, the distorted point cloud is divided into overlap-allowed 3D patches, which are sent to GQE-Net for quality enhancement. To account for differences in data distribution among different color components, three models are trained for the three color components. Experimental results show that our method achieves state-of-the-art performance. For example, when implementing GQE-Net on a recent test model of the geometry-based point cloud compression (G-PCC) standard, 0.43 dB, 0.25 dB and 0.36 dB Bjφntegaard delta (BD)-peak-signal-to-noise ratio (PSNR), corresponding to 14.0%, 9.3% and 14.5% BD-rate savings were achieved on dense point clouds for the Y, Cb, and Cr components, respectively. The source code of our method is available at https://github.com/xjr998/GQE-Net 
650 4 |a Journal Article 
700 1 |a Yuan, Hui  |e verfasserin  |4 aut 
700 1 |a Hamzaoui, Raouf  |e verfasserin  |4 aut 
700 1 |a Liu, Hao  |e verfasserin  |4 aut 
700 1 |a Hou, Junhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 09., Seite 6303-6317  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:09  |g pages:6303-6317 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3330086  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 09  |h 6303-6317