Large-Scale Evaluation of Topic Models and Dimensionality Reduction Methods for 2D Text Spatialization

Topic models are a class of unsupervised learning algorithms for detecting the semantic structure within a text corpus. Together with a subsequent dimensionality reduction algorithm, topic models can be used for deriving spatializations for text corpora as two-dimensional scatter plots, reflecting s...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 1 vom: 23. Jan., Seite 902-912
Auteur principal: Atzberger, Daniel (Auteur)
Autres auteurs: Cech, Tim, Trapp, Matthias, Richter, Rico, Scheibel, Willy, Dollner, Jurgen, Schreck, Tobias
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article