Large-Scale Evaluation of Topic Models and Dimensionality Reduction Methods for 2D Text Spatialization
Topic models are a class of unsupervised learning algorithms for detecting the semantic structure within a text corpus. Together with a subsequent dimensionality reduction algorithm, topic models can be used for deriving spatializations for text corpora as two-dimensional scatter plots, reflecting s...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 1 vom: 23. Jan., Seite 902-912
|
Auteur principal: |
Atzberger, Daniel
(Auteur) |
Autres auteurs: |
Cech, Tim,
Trapp, Matthias,
Richter, Rico,
Scheibel, Willy,
Dollner, Jurgen,
Schreck, Tobias |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2024
|
Accès à la collection: | IEEE transactions on visualization and computer graphics
|
Sujets: | Journal Article |