Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection

Anomaly detection has recently gained increasing attention in the field of computer vision, likely due to its broad set of applications ranging from product fault detection on industrial production lines and impending event detection in video surveillance to finding lesions in medical scans. Regardl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 1 vom: 02. Jan., Seite 525-542
1. Verfasser: Madan, Neelu (VerfasserIn)
Weitere Verfasser: Ristea, Nicolae-Catalin, Ionescu, Radu Tudor, Nasrollahi, Kamal, Khan, Fahad Shahbaz, Moeslund, Thomas B, Shah, Mubarak
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM362949891
003 DE-627
005 20250305075343.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3322604  |2 doi 
028 5 2 |a pubmed25n1209.xml 
035 |a (DE-627)NLM362949891 
035 |a (NLM)37801379 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Madan, Neelu  |e verfasserin  |4 aut 
245 1 0 |a Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Anomaly detection has recently gained increasing attention in the field of computer vision, likely due to its broad set of applications ranging from product fault detection on industrial production lines and impending event detection in video surveillance to finding lesions in medical scans. Regardless of the domain, anomaly detection is typically framed as a one-class classification task, where the learning is conducted on normal examples only. An entire family of successful anomaly detection methods is based on learning to reconstruct masked normal inputs (e.g. patches, future frames, etc.) and exerting the magnitude of the reconstruction error as an indicator for the abnormality level. Unlike other reconstruction-based methods, we present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level. The proposed self-supervised block is extremely flexible, enabling information masking at any layer of a neural network and being compatible with a wide range of neural architectures. In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss. Furthermore, we show that our block is applicable to a wider variety of tasks, adding anomaly detection in medical images and thermal videos to the previously considered tasks based on RGB images and surveillance videos. We exhibit the generality and flexibility of SSMCTB by integrating it into multiple state-of-the-art neural models for anomaly detection, bringing forth empirical results that confirm considerable performance improvements on five benchmarks: MVTec AD, BRATS, Avenue, ShanghaiTech, and Thermal Rare Event 
650 4 |a Journal Article 
700 1 |a Ristea, Nicolae-Catalin  |e verfasserin  |4 aut 
700 1 |a Ionescu, Radu Tudor  |e verfasserin  |4 aut 
700 1 |a Nasrollahi, Kamal  |e verfasserin  |4 aut 
700 1 |a Khan, Fahad Shahbaz  |e verfasserin  |4 aut 
700 1 |a Moeslund, Thomas B  |e verfasserin  |4 aut 
700 1 |a Shah, Mubarak  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 1 vom: 02. Jan., Seite 525-542  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:1  |g day:02  |g month:01  |g pages:525-542 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3322604  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 1  |b 02  |c 01  |h 525-542