Supervision Adaptation Balancing In-Distribution Generalization and Out-of-Distribution Detection

The discrepancy between in-distribution (ID) and out-of-distribution (OOD) samples can lead to distributional vulnerability in deep neural networks, which can subsequently lead to high-confidence predictions for OOD samples. This is mainly due to the absence of OOD samples during training, which fai...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 01. Dez., Seite 15743-15758
Auteur principal: Zhao, Zhilin (Auteur)
Autres auteurs: Cao, Longbing, Lin, Kun-Yu
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article