Supervision Adaptation Balancing In-Distribution Generalization and Out-of-Distribution Detection
The discrepancy between in-distribution (ID) and out-of-distribution (OOD) samples can lead to distributional vulnerability in deep neural networks, which can subsequently lead to high-confidence predictions for OOD samples. This is mainly due to the absence of OOD samples during training, which fai...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 01. Dez., Seite 15743-15758 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2023
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |