Condition-Adaptive Graph Convolution Learning for Skeleton-Based Gait Recognition

Graph convolutional networks have been widely applied in skeleton-based gait recognition. A key challenge in this task is to distinguish the individual walking styles of different subjects across various views. Existing state-of-the-art methods employ uniform convolutions to extract features from di...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 21., Seite 4773-4784
Auteur principal: Huang, Xiaohu (Auteur)
Autres auteurs: Wang, Xinggang, Jin, Zhidianqiu, Yang, Bo, He, Botao, Feng, Bin, Liu, Wenyu
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article