Condition-Adaptive Graph Convolution Learning for Skeleton-Based Gait Recognition
Graph convolutional networks have been widely applied in skeleton-based gait recognition. A key challenge in this task is to distinguish the individual walking styles of different subjects across various views. Existing state-of-the-art methods employ uniform convolutions to extract features from di...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 21., Seite 4773-4784
|
Auteur principal: |
Huang, Xiaohu
(Auteur) |
Autres auteurs: |
Wang, Xinggang,
Jin, Zhidianqiu,
Yang, Bo,
He, Botao,
Feng, Bin,
Liu, Wenyu |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2023
|
Accès à la collection: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Sujets: | Journal Article |