Learning Shape-Invariant Representation for Generalizable Semantic Segmentation
Semantic segmentation assigns a category for each pixel and has achieved great success in a supervised manner. However, it fails to generalize well in new domains due to the domain gap. Domain adaptation is a popular way to solve this issue, but it needs target data and cannot handle unavailable dom...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 5031-5045
|
1. Verfasser: |
Zhang, Yuhang
(VerfasserIn) |
Weitere Verfasser: |
Tian, Shishun,
Liao, Muxin,
Hua, Guoguang,
Zou, Wenbin,
Xu, Chen |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |