Learning Shape-Invariant Representation for Generalizable Semantic Segmentation

Semantic segmentation assigns a category for each pixel and has achieved great success in a supervised manner. However, it fails to generalize well in new domains due to the domain gap. Domain adaptation is a popular way to solve this issue, but it needs target data and cannot handle unavailable dom...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 5031-5045
1. Verfasser: Zhang, Yuhang (VerfasserIn)
Weitere Verfasser: Tian, Shishun, Liao, Muxin, Hua, Guoguang, Zou, Wenbin, Xu, Chen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM358490693
003 DE-627
005 20231226074843.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3287506  |2 doi 
028 5 2 |a pubmed24n1194.xml 
035 |a (DE-627)NLM358490693 
035 |a (NLM)37347635 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yuhang  |e verfasserin  |4 aut 
245 1 0 |a Learning Shape-Invariant Representation for Generalizable Semantic Segmentation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semantic segmentation assigns a category for each pixel and has achieved great success in a supervised manner. However, it fails to generalize well in new domains due to the domain gap. Domain adaptation is a popular way to solve this issue, but it needs target data and cannot handle unavailable domains. In domain generalization (DG), the model is trained without the target data and DG aims to generalize well in new unavailable domains. Recent works reveal that shape recognition is beneficial for generalization but still lack exploration in semantic segmentation. Meanwhile, the object shapes also exist a discrepancy in different domains, which is often ignored by the existing works. Thus, we propose a Shape-Invariant Learning (SIL) framework to focus on learning shape-invariant representation for better generalization. Specifically, we first define the structural edge, which considers both the object boundary and the inner structure of the object to provide more discrimination cues. Then, a shape perception learning strategy including a texture feature discrepancy reduction loss and a structural feature discrepancy enlargement loss is proposed to enhance the shape perception ability of the model by embedding the structural edge as a shape prior. Finally, we use shape deformation augmentation to generate samples with the same content and different shapes. Essentially, our SIL framework performs implicit shape distribution alignment at the domain-level to learn shape-invariant representation. Extensive experiments show that our SIL framework achieves state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Tian, Shishun  |e verfasserin  |4 aut 
700 1 |a Liao, Muxin  |e verfasserin  |4 aut 
700 1 |a Hua, Guoguang  |e verfasserin  |4 aut 
700 1 |a Zou, Wenbin  |e verfasserin  |4 aut 
700 1 |a Xu, Chen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 5031-5045  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:5031-5045 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3287506  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 5031-5045