Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis

We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The co...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 27. Aug., Seite 5034-5046
Auteur principal: Ge, Tong (Auteur)
Autres auteurs: Luo, Xu, Wang, Yunhai, Sedlmair, Michael, Cheng, Zhanglin, Zhao, Ying, Liu, Xin, Deussen, Oliver, Chen, Baoquan
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM357964179
003 DE-627
005 20250304212822.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3284499  |2 doi 
028 5 2 |a pubmed25n1192.xml 
035 |a (DE-627)NLM357964179 
035 |a (NLM)37294655 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ge, Tong  |e verfasserin  |4 aut 
245 1 0 |a Optimally Ordered Orthogonal Neighbor Joining Trees for Hierarchical Cluster Analysis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose to use optimally ordered orthogonal neighbor-joining (O 3 NJ) trees as a new way to visually explore cluster structures and outliers in multi-dimensional data. Neighbor-joining (NJ) trees are widely used in biology, and their visual representation is similar to that of dendrograms. The core difference to dendrograms, however, is that NJ trees correctly encode distances between data points, resulting in trees with varying edge lengths. We optimize NJ trees for their use in visual analysis in two ways. First, we propose to use a novel leaf sorting algorithm that helps users to better interpret adjacencies and proximities within such a tree. Second, we provide a new method to visually distill the cluster tree from an ordered NJ tree. Numerical evaluation and three case studies illustrate the benefits of this approach for exploring multi-dimensional data in areas such as biology or image analysis 
650 4 |a Journal Article 
700 1 |a Luo, Xu  |e verfasserin  |4 aut 
700 1 |a Wang, Yunhai  |e verfasserin  |4 aut 
700 1 |a Sedlmair, Michael  |e verfasserin  |4 aut 
700 1 |a Cheng, Zhanglin  |e verfasserin  |4 aut 
700 1 |a Zhao, Ying  |e verfasserin  |4 aut 
700 1 |a Liu, Xin  |e verfasserin  |4 aut 
700 1 |a Deussen, Oliver  |e verfasserin  |4 aut 
700 1 |a Chen, Baoquan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 27. Aug., Seite 5034-5046  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:27  |g month:08  |g pages:5034-5046 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3284499  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 27  |c 08  |h 5034-5046