Buckling Metamaterials for Extreme Vibration Damping

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 35 vom: 26. Sept., Seite e2301747
Auteur principal: Dykstra, David M J (Auteur)
Autres auteurs: Lenting, Coen, Masurier, Alexandre, Coulais, Corentin
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article buckling dissipation mechanical metamaterials structural materials vibration damping
LEADER 01000caa a22002652c 4500
001 NLM357017501
003 DE-627
005 20250304191349.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202301747  |2 doi 
028 5 2 |a pubmed25n1189.xml 
035 |a (DE-627)NLM357017501 
035 |a (NLM)37199190 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dykstra, David M J  |e verfasserin  |4 aut 
245 1 0 |a Buckling Metamaterials for Extreme Vibration Damping 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Damping mechanical resonances is a formidable challenge in an increasing number of applications. Many passive damping methods rely on using low stiffness, complex mechanical structures or electrical systems, which render them unfeasible in many of these applications. Herein, a new method for passive vibration damping, by allowing buckling of the primary load path in mechanical metamaterials and lattice structures, is introduced, which sets an upper limit for vibration transmission: the transmitted acceleration saturates at a maximum value in both tension and compression, no matter what the input acceleration is. This nonlinear mechanism leads to an extreme damping coefficient tanδ ≈ 0.23 in a metal metamaterial-orders of magnitude larger than the linear damping coefficient of traditional lightweight structural materials. This principle is demonstrated experimentally and numerically in free-standing rubber and metal mechanical metamaterials over a range of accelerations. It is also shown that damping nonlinearities even allow buckling-based vibration damping to work in tension, and that bidirectional buckling can further improve its performance. Buckling metamaterials pave the way toward extreme vibration damping without mass or stiffness penalty, and, as such, could be applicable in a multitude of high-tech applications, including aerospace, vehicles, and sensitive instruments 
650 4 |a Journal Article 
650 4 |a buckling 
650 4 |a dissipation 
650 4 |a mechanical metamaterials 
650 4 |a structural materials 
650 4 |a vibration damping 
700 1 |a Lenting, Coen  |e verfasserin  |4 aut 
700 1 |a Masurier, Alexandre  |e verfasserin  |4 aut 
700 1 |a Coulais, Corentin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 35 vom: 26. Sept., Seite e2301747  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:35  |g day:26  |g month:09  |g pages:e2301747 
856 4 0 |u http://dx.doi.org/10.1002/adma.202301747  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 35  |b 26  |c 09  |h e2301747