Self-Supervised Information Bottleneck for Deep Multi-View Subspace Clustering

In this paper, we explore the problem of deep multi-view subspace clustering framework from an information-theoretic point of view. We extend the traditional information bottleneck principle to learn common information among different views in a self-supervised manner, and accordingly establish a ne...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2023) vom: 24. Feb.
Auteur principal: Wang, Shiye (Auteur)
Autres auteurs: Li, Changsheng, Li, Yanming, Yuan, Ye, Wang, Guoren
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article