Task-Agnostic Vision Transformer for Distributed Learning of Image Processing

Recently, distributed learning approaches have been studied for using data from multiple sources without sharing them, but they are not usually suitable in applications where each client carries out different tasks. Meanwhile, Transformer has been widely explored in computer vision area due to its c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 06., Seite 203-218
1. Verfasser: Kim, Boah (VerfasserIn)
Weitere Verfasser: Kim, Jeongsol, Ye, Jong Chul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM355202271
003 DE-627
005 20250509103749.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3226892  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM355202271 
035 |a (NLM)37015481 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Boah  |e verfasserin  |4 aut 
245 1 0 |a Task-Agnostic Vision Transformer for Distributed Learning of Image Processing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, distributed learning approaches have been studied for using data from multiple sources without sharing them, but they are not usually suitable in applications where each client carries out different tasks. Meanwhile, Transformer has been widely explored in computer vision area due to its capability to learn the common representation through global attention. By leveraging the advantages of Transformer, here we present a new distributed learning framework for multiple image processing tasks, allowing clients to learn distinct tasks with their local data. This arises from a disentangled representation of local and non-local features using a task-specific head/tail and a task-agnostic Vision Transformer. Each client learns a translation from its own task to a common representation using the task-specific networks, while the Transformer body on the server learns global attention between the features embedded in the representation. To enable decomposition between the task-specific and common representations, we propose an alternating training strategy between clients and server. Experimental results on distributed learning for various tasks show that our method synergistically improves the performance of each client with its own data 
650 4 |a Journal Article 
700 1 |a Kim, Jeongsol  |e verfasserin  |4 aut 
700 1 |a Ye, Jong Chul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 06., Seite 203-218  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:06  |g pages:203-218 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3226892  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 06  |h 203-218