Metagenome sequencing to unveil the occurrence and distribution of antibiotic resistome and in a wastewater treatment plant

The emergence and persistence of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) has aroused growing public concern for its risk to human health and ecological safety. Moreover, heavy metals concentrated in sewage and sludge could potentially favour co-selection of ARGs and...

Description complète

Détails bibliographiques
Publié dans:Environmental technology. - 1993. - 45(2024), 10 vom: 21. Apr., Seite 1933-1942
Auteur principal: Li, Zhonghong (Auteur)
Autres auteurs: Yuan, Donghai, Kou, Yingying, Li, Xiaoguang, Du, Caili
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Environmental technology
Sujets:Journal Article Metagenomics antibiotic resistance gene (ARGs) antibiotic resistant bacteria (ARB) metal resistance genes (HMRGs) mobile genetic elements (MGEs) Anti-Bacterial Agents Sewage Wastewater Metals, Heavy
Description
Résumé:The emergence and persistence of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) has aroused growing public concern for its risk to human health and ecological safety. Moreover, heavy metals concentrated in sewage and sludge could potentially favour co-selection of ARGs and heavy metal resistance genes (HMRGs). In this study, the profile and abundance of antibiotic and metal resistance genes in influent, sludge and effluent were characterized based on the Structured ARG Datebase (SARG) and Antibacterial Biocide and Metal Resistance Gene Datebase (BacMet) by metagenomic analysis. Sequences were aligning against the INTEGRALL, ISFinder, ICEberg and NCBI RefSeq databases to obtain the diversity and abundance of mobile genetic elements (MGEs, e.g.plasmid and transposon). Among them, 20 types of ARGs and 16 types of HMRG were detected in all samples, the influent metagenomes contained many more resistance genes (both ARGs and HMRGs) than the sludge and the influent sample, large reductions in the relatively abundance and diversity of ARG were achieved by biological treatment. ARGs and HMRGs cannot be completely eliminated during the oxidation ditch. A total of 32 species of the potential pathogens were detected, relative abundances of pathogens had no obvious changes. It is suggested that more specific treatments are required to limit their proliferation in the environment. This study can be helpful for further understanding the removal of antibiotic resistance genes in the sewage treatment process via metagenomic sequencing
Description:Date Completed 20.03.2024
Date Revised 20.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1479-487X
DOI:10.1080/09593330.2022.2158758