Short text topic modelling approaches in the context of big data : taxonomy, survey, and analysis

© The Author(s), under exclusive licence to Springer Nature B.V. 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely g...

Description complète

Détails bibliographiques
Publié dans:Artificial intelligence review. - 1998. - 56(2023), 6 vom: 28., Seite 5133-5260
Auteur principal: Murshed, Belal Abdullah Hezam (Auteur)
Autres auteurs: Mallappa, Suresha, Abawajy, Jemal, Saif, Mufeed Ahmed Naji, Al-Ariki, Hasib Daowd Esmail, Abdulwahab, Hudhaifa Mohammed
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Artificial intelligence review
Sujets:Journal Article Big data Coherence Data streaming Deep learning topic modeling Short text topic modeling Social media Sparseness
LEADER 01000caa a22002652c 4500
001 NLM348346034
003 DE-627
005 20250304012556.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-022-10254-w  |2 doi 
028 5 2 |a pubmed25n1160.xml 
035 |a (DE-627)NLM348346034 
035 |a (NLM)36320612 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Murshed, Belal Abdullah Hezam  |e verfasserin  |4 aut 
245 1 0 |a Short text topic modelling approaches in the context of big data  |b taxonomy, survey, and analysis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a Social media platforms such as (Twitter, Facebook, and Weibo) are being increasingly embraced by individuals, groups, and organizations as a valuable source of information. This social media generated information comes in the form of tweets or posts, and normally characterized as short text, huge, sparse, and low density. Since many real-world applications need semantic interpretation of such short texts, research in Short Text Topic Modeling (STTM) has recently gained a lot of interest to reveal unique and cohesive latent topics. This article examines the current state of the art in STTM algorithms. It presents a comprehensive survey and taxonomy of STTM algorithms for short text topic modelling. The article also includes a qualitative and quantitative study of the STTM algorithms, as well as analyses of the various strengths and drawbacks of STTM techniques. Moreover, a comparative analysis of the topic quality and performance of representative STTM models is presented. The performance evaluation is conducted on two real-world Twitter datasets: the Real-World Pandemic Twitter (RW-Pand-Twitter) dataset and Real-world Cyberbullying Twitter (RW-CB-Twitter) dataset in terms of several metrics such as topic coherence, purity, NMI, and accuracy. Finally, the open challenges and future research directions in this promising field are discussed to highlight the trends of research in STTM. The work presented in this paper is useful for researchers interested in learning state-of-the-art short text topic modelling and researchers focusing on developing new algorithms for short text topic modelling 
650 4 |a Journal Article 
650 4 |a Big data 
650 4 |a Coherence 
650 4 |a Data streaming 
650 4 |a Deep learning topic modeling 
650 4 |a Short text topic modeling 
650 4 |a Social media 
650 4 |a Sparseness 
700 1 |a Mallappa, Suresha  |e verfasserin  |4 aut 
700 1 |a Abawajy, Jemal  |e verfasserin  |4 aut 
700 1 |a Saif, Mufeed Ahmed Naji  |e verfasserin  |4 aut 
700 1 |a Al-Ariki, Hasib Daowd Esmail  |e verfasserin  |4 aut 
700 1 |a Abdulwahab, Hudhaifa Mohammed  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g 56(2023), 6 vom: 28., Seite 5133-5260  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnas 
773 1 8 |g volume:56  |g year:2023  |g number:6  |g day:28  |g pages:5133-5260 
856 4 0 |u http://dx.doi.org/10.1007/s10462-022-10254-w  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 56  |j 2023  |e 6  |b 28  |h 5133-5260