Neural Architecture Search via Proxy Validation

This paper searches for the optimal neural architecture by minimizing a proxy of validation loss. Existing neural architecture search (NAS) methods used to discover the optimal neural architecture that best fits the validation examples given the up-to-date network weights. These intermediate validat...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 08. Juni, Seite 7595-7610
Auteur principal: Li, Yanxi (Auteur)
Autres auteurs: Dong, Minjing, Wang, Yunhe, Xu, Chang
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM348161743
003 DE-627
005 20250304005802.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3217648  |2 doi 
028 5 2 |a pubmed25n1160.xml 
035 |a (DE-627)NLM348161743 
035 |a (NLM)36301784 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yanxi  |e verfasserin  |4 aut 
245 1 0 |a Neural Architecture Search via Proxy Validation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper searches for the optimal neural architecture by minimizing a proxy of validation loss. Existing neural architecture search (NAS) methods used to discover the optimal neural architecture that best fits the validation examples given the up-to-date network weights. These intermediate validation results are invaluable but have not been fully explored. We propose to approximate the validation loss landscape by learning a mapping from neural architectures to their corresponding validate losses. The optimal neural architecture thus can be easily identified as the minimum of this proxy validation loss landscape. To improve the efficiency, a novel architecture sampling strategy is developed for the approximation of the proxy validation loss landscape. We also propose an operation importance weight (OIW) to balance the randomness and certainty of architecture sampling. The representation of neural architecture is learned through a graph autoencoder (GAE) over both architectures sampled during search and randomly generated architectures. We provide theoretical analyses on the validation loss estimator learned with our sampling strategy. Experimental results demonstrate that the proposed proxy validation loss landscape can be effective in both the differentiable NAS and the evolutionary-algorithm-based (EA-based) NAS 
650 4 |a Journal Article 
700 1 |a Dong, Minjing  |e verfasserin  |4 aut 
700 1 |a Wang, Yunhe  |e verfasserin  |4 aut 
700 1 |a Xu, Chang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 08. Juni, Seite 7595-7610  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:08  |g month:06  |g pages:7595-7610 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3217648  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 08  |c 06  |h 7595-7610