Structured Sparsity Optimization With Non-Convex Surrogates of l2,0-Norm : A Unified Algorithmic Framework

In this article, we present a general optimization framework that leverages structured sparsity to achieve superior recovery results. The traditional method for solving the structured sparse objectives based on l2,0-norm is to use the l2,1-norm as a convex surrogate. However, such an approximation o...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 08. Mai, Seite 6386-6402
Auteur principal: Zhang, Xiaoqin (Auteur)
Autres auteurs: Zheng, Jingjing, Wang, Di, Tang, Guiying, Zhou, Zhengyuan, Lin, Zhouchen
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article