Structured Sparsity Optimization With Non-Convex Surrogates of l2,0-Norm : A Unified Algorithmic Framework
In this article, we present a general optimization framework that leverages structured sparsity to achieve superior recovery results. The traditional method for solving the structured sparse objectives based on l2,0-norm is to use the l2,1-norm as a convex surrogate. However, such an approximation o...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 08. Mai, Seite 6386-6402
|
Auteur principal: |
Zhang, Xiaoqin
(Auteur) |
Autres auteurs: |
Zheng, Jingjing,
Wang, Di,
Tang, Guiying,
Zhou, Zhengyuan,
Lin, Zhouchen |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2023
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |