TRAFFICVIS : Visualizing Organized Activity and Spatio-Temporal Patterns for Detecting and Labeling Human Trafficking

Law enforcement and domain experts can detect human trafficking (HT) in online escort websites by analyzing suspicious clusters of connected ads. How can we explain clustering results intuitively and interactively, visualizing potential evidence for experts to analyze? We present TRAFFICVIS, the fir...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2022) vom: 06. Okt.
1. Verfasser: Vajiac, Catalina (VerfasserIn)
Weitere Verfasser: Chau, Duen Horng, Olligschlaeger, Andreas, Mackenzie, Rebecca, Nair, Pratheeksha, Lee, Meng-Chieh, Li, Yifei, Park, Namyong, Rabbany, Reihaneh, Faloutsos, Christos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM347167918
003 DE-627
005 20240217232112.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3209403  |2 doi 
028 5 2 |a pubmed24n1297.xml 
035 |a (DE-627)NLM347167918 
035 |a (NLM)36201417 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vajiac, Catalina  |e verfasserin  |4 aut 
245 1 0 |a TRAFFICVIS  |b Visualizing Organized Activity and Spatio-Temporal Patterns for Detecting and Labeling Human Trafficking 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Law enforcement and domain experts can detect human trafficking (HT) in online escort websites by analyzing suspicious clusters of connected ads. How can we explain clustering results intuitively and interactively, visualizing potential evidence for experts to analyze? We present TRAFFICVIS, the first interface for cluster-level HT detection and labeling. Developed through months of participatory design with domain experts, TRAFFICVIS provides coordinated views in conjunction with carefully chosen backend algorithms to effectively show spatio-temporal and text patterns to a wide variety of anti-HT stakeholders. We build upon state-of-the-art text clustering algorithms by incorporating shared metadata as a signal of connected and possibly suspicious activity, then visualize the results. Domain experts can use TRAFFICVIS to label clusters as HT, or other, suspicious, but non-HT activity such as spam and scam, quickly creating labeled datasets to enable further HT research. Through domain expert feedback and a usage scenario, we demonstrate TRAFFICVIS's efficacy. The feedback was overwhelmingly positive, with repeated high praises for the usability and explainability of our tool, the latter being vital for indicting possible criminals 
650 4 |a Journal Article 
700 1 |a Chau, Duen Horng  |e verfasserin  |4 aut 
700 1 |a Olligschlaeger, Andreas  |e verfasserin  |4 aut 
700 1 |a Mackenzie, Rebecca  |e verfasserin  |4 aut 
700 1 |a Nair, Pratheeksha  |e verfasserin  |4 aut 
700 1 |a Lee, Meng-Chieh  |e verfasserin  |4 aut 
700 1 |a Li, Yifei  |e verfasserin  |4 aut 
700 1 |a Park, Namyong  |e verfasserin  |4 aut 
700 1 |a Rabbany, Reihaneh  |e verfasserin  |4 aut 
700 1 |a Faloutsos, Christos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2022) vom: 06. Okt.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2022  |g day:06  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3209403  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 06  |c 10