Fitting Bell Curves to Data Distributions Using Visualization

Idealized probability distributions, such as normal or other curves, lie at the root of confirmatory statistical tests. But how well do people understand these idealized curves? In practical terms, does the human visual system allow us to match sample data distributions with hypothesized population...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 12 vom: 01. Dez., Seite 5372-5383
1. Verfasser: Newburger, Eric (VerfasserIn)
Weitere Verfasser: Correll, Michael, Elmqvist, Niklas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM346893259
003 DE-627
005 20231226032533.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3210763  |2 doi 
028 5 2 |a pubmed24n1156.xml 
035 |a (DE-627)NLM346893259 
035 |a (NLM)36173772 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Newburger, Eric  |e verfasserin  |4 aut 
245 1 0 |a Fitting Bell Curves to Data Distributions Using Visualization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Idealized probability distributions, such as normal or other curves, lie at the root of confirmatory statistical tests. But how well do people understand these idealized curves? In practical terms, does the human visual system allow us to match sample data distributions with hypothesized population distributions from which those samples might have been drawn? And how do different visualization techniques impact this capability? This article shares the results of a crowdsourced experiment that tested the ability of respondents to fit normal curves to four different data distribution visualizations: bar histograms, dotplot histograms, strip plots, and boxplots. We find that the crowd can estimate the center (mean) of a distribution with some success and little bias. We also find that people generally overestimate the standard deviation-which we dub the "umbrella effect" because people tend to want to cover the whole distribution using the curve, as if sheltering it from the heavens above-and that strip plots yield the best accuracy 
650 4 |a Journal Article 
700 1 |a Correll, Michael  |e verfasserin  |4 aut 
700 1 |a Elmqvist, Niklas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 12 vom: 01. Dez., Seite 5372-5383  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:12  |g day:01  |g month:12  |g pages:5372-5383 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3210763  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 12  |b 01  |c 12  |h 5372-5383