Speckle Reduction via Deep Content-Aware Image Prior for Precise Breast Tumor Segmentation in an Ultrasound Image

The performance of computer-aided diagnosis (CAD) systems that are based on ultrasound imaging has been enhanced owing to the advancement in deep learning. However, because of the inherent speckle noise in ultrasound images, the ambiguous boundaries of lesions deteriorate and are difficult to distin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 69(2022), 9 vom: 25. Sept., Seite 2638-2650
1. Verfasser: Lee, Haeyun (VerfasserIn)
Weitere Verfasser: Lee, Moon Hwan, Youn, Sangyeon, Lee, Kyungsu, Lew, Hah Min, Hwang, Jae Youn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM34397701X
003 DE-627
005 20231226021708.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2022.3193640  |2 doi 
028 5 2 |a pubmed24n1146.xml 
035 |a (DE-627)NLM34397701X 
035 |a (NLM)35877808 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Haeyun  |e verfasserin  |4 aut 
245 1 0 |a Speckle Reduction via Deep Content-Aware Image Prior for Precise Breast Tumor Segmentation in an Ultrasound Image 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.08.2022 
500 |a Date Revised 06.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The performance of computer-aided diagnosis (CAD) systems that are based on ultrasound imaging has been enhanced owing to the advancement in deep learning. However, because of the inherent speckle noise in ultrasound images, the ambiguous boundaries of lesions deteriorate and are difficult to distinguish, resulting in the performance degradation of CAD. Although several methods have been proposed to reduce speckle noise over decades, this task remains a challenge that must be improved to enhance the performance of CAD. In this article, we propose a deep content-aware image prior (DCAIP) with a content-aware attention module (CAAM) for superior despeckling of ultrasound images without clean images. For the image prior, we developed a CAAM to deal with the content information in an input image. In this module, super-pixel pooling (SPP) is used to give attention to salient regions in an ultrasound image. Therefore, it can provide more content information regarding the input image when compared to other attention modules. The DCAIP consists of deep learning networks based on this attention module. The DCAIP is validated by applying it as a preprocessing step for breast tumor segmentation in ultrasound images, which is one of the tasks in CAD. Our method improved the segmentation performance by 15.89% in terms of the area under the precision-recall (PR) curve (AUPRC). The results demonstrate that our method enhances the quality of ultrasound images by effectively reducing speckle noise while preserving important information in the image, promising for the design of superior CAD systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lee, Moon Hwan  |e verfasserin  |4 aut 
700 1 |a Youn, Sangyeon  |e verfasserin  |4 aut 
700 1 |a Lee, Kyungsu  |e verfasserin  |4 aut 
700 1 |a Lew, Hah Min  |e verfasserin  |4 aut 
700 1 |a Hwang, Jae Youn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 69(2022), 9 vom: 25. Sept., Seite 2638-2650  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:69  |g year:2022  |g number:9  |g day:25  |g month:09  |g pages:2638-2650 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2022.3193640  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2022  |e 9  |b 25  |c 09  |h 2638-2650