Cov-Net : A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 207(2022) vom: 30. Nov., Seite 118029
1. Verfasser: Li, Han (VerfasserIn)
Weitere Verfasser: Zeng, Nianyin, Wu, Peishu, Clawson, Kathy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article COVID-19 Computer aided diagnosis (CAD) Feature learning Image recognition Machine vision
LEADER 01000caa a22002652c 4500
001 NLM343324768
003 DE-627
005 20250303134802.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.118029  |2 doi 
028 5 2 |a pubmed25n1144.xml 
035 |a (DE-627)NLM343324768 
035 |a (NLM)35812003 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Han  |e verfasserin  |4 aut 
245 1 0 |a Cov-Net  |b A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a In the context of global pandemic Coronavirus disease 2019 (COVID-19) that threatens life of all human beings, it is of vital importance to achieve early detection of COVID-19 among symptomatic patients. In this paper, a computer aided diagnosis (CAD) model Cov-Net is proposed for accurate recognition of COVID-19 from chest X-ray images via machine vision techniques, which mainly concentrates on powerful and robust feature learning ability. In particular, a modified residual network with asymmetric convolution and attention mechanism embedded is selected as the backbone of feature extractor, after which skip-connected dilated convolution with varying dilation rates is applied to achieve sufficient feature fusion among high-level semantic and low-level detailed information. Experimental results on two public COVID-19 radiography databases have demonstrated the practicality of proposed Cov-Net in accurate COVID-19 recognition with accuracy of 0.9966 and 0.9901, respectively. Furthermore, within same experimental conditions, proposed Cov-Net outperforms other six state-of-the-art computer vision algorithms, which validates the superiority and competitiveness of Cov-Net in building highly discriminative features from the perspective of methodology. Hence, it is deemed that proposed Cov-Net has a good generalization ability so that it can be applied to other CAD scenarios. Consequently, one can conclude that this work has both practical value in providing reliable reference to the radiologist and theoretical significance in developing methods to build robust features with strong presentation ability 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Computer aided diagnosis (CAD) 
650 4 |a Feature learning 
650 4 |a Image recognition 
650 4 |a Machine vision 
700 1 |a Zeng, Nianyin  |e verfasserin  |4 aut 
700 1 |a Wu, Peishu  |e verfasserin  |4 aut 
700 1 |a Clawson, Kathy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 207(2022) vom: 30. Nov., Seite 118029  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnas 
773 1 8 |g volume:207  |g year:2022  |g day:30  |g month:11  |g pages:118029 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.118029  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 207  |j 2022  |b 30  |c 11  |h 118029