Effect of Relaxations on the Conductivity of La1/2+1/2x Li1/2-1/2x Ti1-x Al x O3 Fast Ion Conductors
© 2022 The Authors. Published by American Chemical Society.
Veröffentlicht in: | Chemistry of materials : a publication of the American Chemical Society. - 1998. - 34(2022), 12 vom: 28. Juni, Seite 5484-5499 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Chemistry of materials : a publication of the American Chemical Society |
Schlagworte: | Journal Article |
Zusammenfassung: | © 2022 The Authors. Published by American Chemical Society. Perovskite-type solid-state electrolytes, Li3x La2/3-x TiO3 (LLTO), are considered among the most promising candidates for the development of all-solid-state batteries based on lithium metal. Their high bulk ionic conductivity can be modulated by substituting part of the atoms hosted in the A- or B-site of the LLTO structure. In this work, we investigate the crystal structure and the long-range charge migration processes characterizing a family of perovskites with the general formula La1/2+1/2x Li1/2-1/2x Ti1-x Al x O3 (0 ≤ x ≤ 0.6), in which the charge balance and the nominal A-site vacancies (n A = 0) are preserved. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) investigations reveal the presence of a very complex nanostructure constituted by a mixture of two different ordered nanoregions of tetragonal P4/mmm and rhombohedral R3̅c symmetries. Broadband electrical spectroscopy studies confirm the presence of different crystalline domains and demonstrate that the structural fluctuations of the BO6 octahedra require to be intra- and intercell coupled, to enable the long-range diffusion of the lithium cation, in a similar way to the segmental mode that takes place in polymer-ion conductors. These hypotheses are corroborated by density functional theory (DFT) calculations and molecular dynamic simulations |
---|---|
Beschreibung: | Date Revised 16.07.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 0897-4756 |
DOI: | 10.1021/acs.chemmater.2c00459 |