A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 3 vom: 17., Seite 638-655
1. Verfasser: Baghfalaki, T (VerfasserIn)
Weitere Verfasser: Ganjali, M, Kabir, A, Pazouki, A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Conditional model MCMC methods intermittent missingness joint modeling longitudinal data mixed-effects model
LEADER 01000caa a22002652c 4500
001 NLM342281569
003 DE-627
005 20250303113504.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1822303  |2 doi 
028 5 2 |a pubmed25n1140.xml 
035 |a (DE-627)NLM342281569 
035 |a (NLM)35706768 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Baghfalaki, T  |e verfasserin  |4 aut 
245 1 2 |a A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery 
650 4 |a Journal Article 
650 4 |a Conditional model 
650 4 |a MCMC methods 
650 4 |a intermittent missingness 
650 4 |a joint modeling 
650 4 |a longitudinal data 
650 4 |a mixed-effects model 
700 1 |a Ganjali, M  |e verfasserin  |4 aut 
700 1 |a Kabir, A  |e verfasserin  |4 aut 
700 1 |a Pazouki, A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 3 vom: 17., Seite 638-655  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:3  |g day:17  |g pages:638-655 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1822303  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 3  |b 17  |h 638-655