A non-parametric statistic for testing conditional heteroscedasticity for unobserved component models

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 3 vom: 12., Seite 471-497
1. Verfasser: Rodriguez, Alejandro (VerfasserIn)
Weitere Verfasser: Pino, Gabriel, Herrera, Rodrigo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62G10 62G30 Auxiliary residuals Kalman filter bootstrap procedures squared autocorrelations state smoothing state-space models
LEADER 01000naa a22002652 4500
001 NLM342279211
003 DE-627
005 20231226013733.0
007 cr uuu---uuuuu
008 231226s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1732885  |2 doi 
028 5 2 |a pubmed24n1140.xml 
035 |a (DE-627)NLM342279211 
035 |a (NLM)35706534 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rodriguez, Alejandro  |e verfasserin  |4 aut 
245 1 2 |a A non-parametric statistic for testing conditional heteroscedasticity for unobserved component models 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a When prediction intervals are constructed using unobserved component models (UCM), problems can arise due to the possible existence of components that may or may not be conditionally heteroscedastic. Accurate coverage depends on correctly identifying the source of the heteroscedasticity. Different proposals for testing heteroscedasticity have been applied to UCM; however, in most cases, these procedures are unable to identify the heteroscedastic component correctly. The main issue is that test statistics are affected by the presence of serial correlation, causing the distribution of the statistic under conditional homoscedasticity to remain unknown. We propose a nonparametric statistic for testing heteroscedasticity based on the well-known Wilcoxon's rank statistic. We study the asymptotic validation of the statistic and examine bootstrap procedures for approximating its finite sample distribution. Simulation results show an improvement in the size of the homoscedasticity tests and a power that is clearly comparable with the best alternative in the literature. We also apply the test on real inflation data. Looking for the presence of a conditionally heteroscedastic effect on the error terms, we arrive at conclusions that almost all cases are different than those given by the alternative test statistics presented in the literature 
650 4 |a Journal Article 
650 4 |a 62G10 
650 4 |a 62G30 
650 4 |a Auxiliary residuals 
650 4 |a Kalman filter 
650 4 |a bootstrap procedures 
650 4 |a squared autocorrelations 
650 4 |a state smoothing 
650 4 |a state-space models 
700 1 |a Pino, Gabriel  |e verfasserin  |4 aut 
700 1 |a Herrera, Rodrigo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2021), 3 vom: 12., Seite 471-497  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:48  |g year:2021  |g number:3  |g day:12  |g pages:471-497 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1732885  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 3  |b 12  |h 471-497