A non-parametric statistic for testing conditional heteroscedasticity for unobserved component models

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2021), 3 vom: 12., Seite 471-497
1. Verfasser: Rodriguez, Alejandro (VerfasserIn)
Weitere Verfasser: Pino, Gabriel, Herrera, Rodrigo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62G10 62G30 Auxiliary residuals Kalman filter bootstrap procedures squared autocorrelations state smoothing state-space models
Beschreibung
Zusammenfassung:© 2020 Informa UK Limited, trading as Taylor & Francis Group.
When prediction intervals are constructed using unobserved component models (UCM), problems can arise due to the possible existence of components that may or may not be conditionally heteroscedastic. Accurate coverage depends on correctly identifying the source of the heteroscedasticity. Different proposals for testing heteroscedasticity have been applied to UCM; however, in most cases, these procedures are unable to identify the heteroscedastic component correctly. The main issue is that test statistics are affected by the presence of serial correlation, causing the distribution of the statistic under conditional homoscedasticity to remain unknown. We propose a nonparametric statistic for testing heteroscedasticity based on the well-known Wilcoxon's rank statistic. We study the asymptotic validation of the statistic and examine bootstrap procedures for approximating its finite sample distribution. Simulation results show an improvement in the size of the homoscedasticity tests and a power that is clearly comparable with the best alternative in the literature. We also apply the test on real inflation data. Looking for the presence of a conditionally heteroscedastic effect on the error terms, we arrive at conclusions that almost all cases are different than those given by the alternative test statistics presented in the literature
Beschreibung:Date Revised 16.07.2022
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0266-4763
DOI:10.1080/02664763.2020.1732885